A decompression pipeline for accelerating out-of-core volume rendering of time-varying data

This paper presents a decompression pipeline capable of accelerating out-of-core volume rendering of time-varying scalar data. Our pipeline is based on a two-stage compression method that cooperatively uses the CPU and the graphics processing unit (GPU) to transfer compressed data entirely from the storage device to the video memory. This method combines two different compression algorithms, namely packed volume texture compression (PVTC) and Lempel-Ziv-Oberhumer (LZO) compression, allowing us to exploit both temporal and spatial coherence in time-varying data. Furthermore, it achieves fast decompression by taking architectural advantages of each processing unit: a hardware component on the GPU and a large cache on the CPU, each suited to decompress PVTC and LZO encoded data, respectively. We also integrate the method with a thread-based pipeline mechanism to increase the data throughput by overlapping data loading, data decompression, and rendering stages. Our pipelined renderer runs on a quad-core PC and achieves a video rate of 41 frames per second (fps) in average for 258x258x208 voxel data with 150 time steps. It also demonstrates an almost interactive rate of 8fps for 512x512x295 voxel data with 411 time steps.

[1]  Bradford Nichols,et al.  Pthreads programming , 1996 .

[2]  Christophe Mion,et al.  COTS cluster-based sort-last rendering: performance evaluation and pipelined implementation , 2005, VIS 05. IEEE Visualization, 2005..

[3]  Thomas Ertl,et al.  Large volume visualization of compressed time-dependent datasets on GPU clusters , 2005, Parallel Comput..

[4]  Vipin Kumar,et al.  Introduction to Parallel Computing , 1994 .

[5]  Jason Lee,et al.  Using High-Speed WANs and Network Data Caches to Enable Remote and Distributed Visualization , 2000, ACM/IEEE SC 2000 Conference (SC'00).

[6]  Kwan-Liu Ma,et al.  A Scalable, Hybrid Scheme for Volume Rendering Massive Data Sets y , 2022 .

[7]  Cláudio T. Silva,et al.  An adaptive framework for visualizing unstructured grids with time-varying scalar fields , 2007, Parallel Comput..

[8]  Jens Schneider,et al.  Compression domain volume rendering , 2003, IEEE Visualization, 2003. VIS 2003..

[9]  Balraj Naren,et al.  Medical Image Registration , 2022 .

[10]  Li Chen,et al.  Parallel simulation of strong ground motions during recent and historical damaging earthquakes in Tokyo, Japan , 2005, Parallel Comput..

[11]  Fumihiko Ino,et al.  A data distributed parallel algorithm for nonrigid image registration , 2005, Parallel Comput..

[12]  Kwan-Liu Ma,et al.  A Hardware-Assisted Scalable Solution for Interactive Volume Rendering of Time-Varying Data , 2002, IEEE Trans. Vis. Comput. Graph..

[13]  Kwan-Liu Ma,et al.  Visualizing time-varying volume data , 2003, Comput. Sci. Eng..

[14]  Kwan-Liu Ma,et al.  Time-varying, multivariate volume data reduction , 2005, SAC '05.

[15]  Marc Levoy,et al.  Display of surfaces from volume data , 1988, IEEE Computer Graphics and Applications.

[16]  Kwan-Liu Ma,et al.  Transform Coding for Hardware-accelerated Volume Rendering , 2007, IEEE Transactions on Visualization and Computer Graphics.

[17]  D. Hill,et al.  Medical image registration , 2001, Physics in medicine and biology.

[18]  Wolfgang Straßer,et al.  Interactive rendering of large volume data sets , 2002, IEEE Visualization, 2002. VIS 2002..

[19]  Bingsheng He,et al.  Efficient gather and scatter operations on graphics processors , 2007, Proceedings of the 2007 ACM/IEEE Conference on Supercomputing (SC '07).

[20]  Brian Cabral,et al.  Accelerated volume rendering and tomographic reconstruction using texture mapping hardware , 1994, VVS '94.

[21]  Henry P. Moreton,et al.  The GeForce 6800 , 2005, IEEE Micro.

[22]  Carla Maria Dal Sasso Freitas,et al.  Real-time volume rendering of time-varying data using a fragment-shader compression approach , 2003, IEEE Symposium on Parallel and Large-Data Visualization and Graphics, 2003. PVG 2003..

[23]  Yao Wang,et al.  Video Processing and Communications , 2001 .

[24]  Jens H. Krüger,et al.  A Survey of General‐Purpose Computation on Graphics Hardware , 2007, Eurographics.

[25]  Kwan-Liu Ma,et al.  End-to-end data reduction and hardware accelerated rendering techniques for visualizing time-varying non-uniform grid volume data , 2005, Fourth International Workshop on Volume Graphics, 2005..

[26]  Kwan-Liu Ma,et al.  A study of I/O methods for parallel visualization of large-scale data , 2005, Parallel Comput..

[27]  Bernd Hamann,et al.  Multiresolution techniques for interactive texture-based volume visualization , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[28]  Fumihiko Ino,et al.  Two-stage compression for fast volume rendering of time-varying scalar data , 2006, GRAPHITE '06.

[29]  Kwan-Liu Ma,et al.  A parallel pipelined renderer for time-varying volume data , 1997, Proceedings of the 1997 International Symposium on Parallel Architectures, Algorithms and Networks (I-SPAN'97).

[30]  William R. Mark,et al.  Cg: a system for programming graphics hardware in a C-like language , 2003, ACM Trans. Graph..

[31]  John Clyne The Multiresolution Toolkit: Progressive Access for Regular Gridded Data , 2003 .

[32]  Abraham Lempel,et al.  A universal algorithm for sequential data compression , 1977, IEEE Trans. Inf. Theory.