TMEM106B protects C9ORF72 expansion carriers against frontotemporal dementia
暂无分享,去创建一个
Kevin F. Bieniek | M. Mesulam | L. Petrucelli | R. Petersen | B. Boeve | D. Knopman | M. Murray | D. Dickson | J. Parisi | R. Caselli | L. Grinberg | W. Seeley | E. Bigio | S. Weintraub | A. Kertesz | M. Heckman | A. Karydas | T. Beach | G. Hsiung | Z. Wszolek | N. Graff-Radford | I. Mackenzie | E. Finger | M. Strong | K. Hatanpaa | M. Baker | R. Rademakers | K. Josephs | Charles L. White III | N. Finch | C. Lippa | M. Dejesus-Hernandez | K. Boylan | Alexandra M. Nicholson | M. van Blitterswijk | Patricia H. Brown | H. Stewart | B. Miller | Bianca Mullen | R. Rademakers | B. Miller | M. Dejesus‐Hernandez | Kevin F Bieniek | B. Miller | D. Knopman | C. L. White III
[1] Kevin F. Bieniek,et al. C9ORF72 repeat expansions in cases with previously identified pathogenic mutations , 2013, Neurology.
[2] L. Petrucelli,et al. Association between repeat sizes and clinical and pathological characteristics in carriers of C9ORF72 repeat expansions (Xpansize-72): a cross-sectional cohort study , 2013, The Lancet Neurology.
[3] B. Boeve,et al. TMEM106B p.T185S regulates TMEM106B protein levels: implications for frontotemporal dementia , 2013, Journal of neurochemistry.
[4] E. Kremmer,et al. The C9orf72 GGGGCC Repeat Is Translated into Aggregating Dipeptide-Repeat Proteins in FTLD/ALS , 2013, Science.
[5] Kevin F. Bieniek,et al. Unconventional Translation of C9ORF72 GGGGCC Expansion Generates Insoluble Polypeptides Specific to c9FTD/ALS , 2013, Neuron.
[6] O. Brady,et al. The frontotemporal lobar degeneration risk factor, TMEM106B, regulates lysosomal morphology and function. , 2013, Human molecular genetics.
[7] Rosa Rademakers,et al. How do C9ORF72 repeat expansions cause amyotrophic lateral sclerosis and frontotemporal dementia: can we learn from other noncoding repeat expansion disorders? , 2012, Current opinion in neurology.
[8] J. Trojanowski,et al. TMEM106B, the Risk Gene for Frontotemporal Dementia, Is Regulated by the microRNA-132/212 Cluster and Affects Progranulin Pathways , 2012, The Journal of Neuroscience.
[9] Jin-A Lee,et al. The functional analysis of the CHMP2B missense mutation associated with neurodegenerative diseases in the endo-lysosomal pathway. , 2012, Biochemical and biophysical research communications.
[10] E. Kremmer,et al. Membrane Orientation and Subcellular Localization of Transmembrane Protein 106B (TMEM106B), a Major Risk Factor for Frontotemporal Lobar Degeneration*♦ , 2012, The Journal of Biological Chemistry.
[11] Janel O. Johnson,et al. Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study , 2012, The Lancet Neurology.
[12] Bruce L. Miller,et al. Expanded GGGGCC Hexanucleotide Repeat in Noncoding Region of C9ORF72 Causes Chromosome 9p-Linked FTD and ALS , 2011, Neuron.
[13] David Heckerman,et al. A Hexanucleotide Repeat Expansion in C9ORF72 Is the Cause of Chromosome 9p21-Linked ALS-FTD , 2011, Neuron.
[14] R. Aebersold,et al. Endolysosomal sorting of ubiquitylated caveolin-1 is regulated by VCP and UBXD1 and impaired by VCP disease mutations , 2011, Nature Cell Biology.
[15] J. Trojanowski,et al. A harmonized classification system for FTLD-TDP pathology , 2011, Acta Neuropathologica.
[16] Y. Ye,et al. The p97 ATPase associates with EEA1 to regulate the size of early endosomes , 2011, Cell Research.
[17] J. Morris,et al. Association of TMEM106B gene polymorphism with age at onset in granulin mutation carriers and plasma granulin protein levels. , 2011, Archives of neurology.
[18] D. Neary,et al. Frontotemporal lobar degeneration genome wide association study replication confirms a risk locus shared with amyotrophic lateral sclerosis , 2011, Neurobiology of Aging.
[19] William T. Hu,et al. Risk genotypes at TMEM106B are associated with cognitive impairment in amyotrophic lateral sclerosis , 2011, Acta Neuropathologica.
[20] K. Sleegers,et al. TMEM106B is associated with frontotemporal lobar degeneration in a clinically diagnosed patient cohort , 2011, Brain : a journal of neurology.
[21] D. Geschwind,et al. TMEM106B regulates progranulin levels and the penetrance of FTLD in GRN mutation carriers , 2010, Neurology.
[22] C. van Broeckhoven,et al. Disruption of endocytic trafficking in frontotemporal dementia with CHMP2B mutations , 2010, Human molecular genetics.
[23] M. J. Fresnadillo Martínez,et al. Common variants at 7p21 are associated with frontotemporal lobar degeneration with TDP-43 inclusions , 2010, Nature Genetics.
[24] S. Young,et al. ESCRT-III Dysfunction Causes Autophagosome Accumulation and Neurodegeneration , 2007, Current Biology.
[25] S. Melquist,et al. Mutations in progranulin are a major cause of ubiquitin-positive frontotemporal lobar degeneration. , 2006, Human molecular genetics.
[26] Bruce L. Miller,et al. Ubiquitinated TDP-43 in Frontotemporal Lobar Degeneration and Amyotrophic Lateral Sclerosis , 2006, Science.
[27] C. Duijn,et al. Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21 , 2006, Nature.
[28] S. Melquist,et al. Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17 , 2006, Nature.
[29] J. Trojanowski,et al. Nomenclature for neuropathologic subtypes of frontotemporal lobar degeneration: consensus recommendations , 2008, Acta Neuropathologica.
[30] S. Holm. A Simple Sequentially Rejective Multiple Test Procedure , 1979 .