Color blindness and contrast perception in cuttlefish (Sepia officinalis) determined by a visual sensorimotor assay
暂无分享,去创建一个
Roger T. Hanlon | Lydia M. Mäthger | R. Hanlon | A. Barbosa | Alexandra Barbosa | Simon Miner | L. Mäthger | Simon Miner | Alexandra Barbosa
[1] C. Chiao,et al. Cuttlefish cue visually on area--not shape or aspect ratio--of light objects in the substrate to produce disruptive body patterns for camouflage. , 2001, The Biological bulletin.
[2] Eric Warrant,et al. Vision in the dimmest habitats on Earth , 2004, Journal of Comparative Physiology A.
[3] R T Hanlon,et al. Cuttlefish camouflage: visual perception of size, contrast and number of white squares on artificial checkerboard substrata initiates disruptive coloration. , 2001, The Journal of experimental biology.
[4] Eric J. Warrant,et al. Absorption of white light in photoreceptors , 1998, Vision Research.
[5] J. Nicol,et al. A survey of reflectivity in silvery teleosts , 1966, Journal of the Marine Biological Association of the United Kingdom.
[6] V. Porciatti,et al. The electroretinogram of the little owl (Athene noctua) , 1989, Vision Research.
[7] J. Cronly-Dillon,et al. Vision and visual dysfunction. , 1994, Journal of cognitive neuroscience.
[8] Simon B. Laughlin,et al. Comparative Physiology and Evolution of Vision in Invertebrates , 1981 .
[9] E. Poulton. Adaptive Coloration in Animals , 1940, Nature.
[10] S. Archer. Adaptive Mechanisms in the Ecology of Vision , 1999, Springer Netherlands.
[11] A. Kelber,et al. True Colour Vision in the Orchard Butterfly, Papilio aegeus , 1999, Naturwissenschaften.
[12] J. Messenger,et al. Cephalopod chromatophores: neurobiology and natural history , 2001, Biological reviews of the Cambridge Philosophical Society.
[13] J. Messenger. Comparative Physiology of Vision in Molluscs , 1981 .
[14] R. L. Gregory,et al. Rapid adaptive camouflage in tropical flounders , 1996, Nature.
[15] W. McFarland,et al. Visual Biology of Hawaiian Coral Reef Fishes. III. Environmental Light and an Integrated Approach to the Ecology of Reef Fish Vision , 2003, Copeia.
[16] E. Hochberg,et al. Spectral discrimination of coral reef benthic communities , 2000, Coral Reefs.
[17] Vision Research , 1961, Nature.
[18] Serge Andréfouët,et al. Spectral reflectance of coral , 2004, Coral Reefs.
[19] K. Frisch. Der Farbensinn und Formensinn der Biene , 1914 .
[20] D. Hamasaki. The ERG-determined spectral sensitivity of the octopus. , 1968, Vision research.
[21] J. Hailman. Ecology of Vision , 1981 .
[22] Serge Andréfouët,et al. Spectral reflectance of coral reef bottom-types worldwide and implications for coral reef remote sensing , 2003 .
[23] W. Muntz. Visual systems, behaviour, and environment in cephalopods , 1999 .
[24] J. Messenger,et al. Evidence that Octopus is Colour Blind , 1977 .
[25] K. Hiraki,et al. On the three visual pigments in the retina of the firefly squid, Watasenia scintillans , 1990, Journal of Comparative Physiology A.
[26] Y. Kito,et al. Adaptation of a deep-sea cephalopod to the photic environment. Evidence for three visual pigments , 1988, The Journal of general physiology.
[27] J. S. Collins,et al. A wavelength discrimination function for the hummingbirdArchilochus alexandri , 1981, Journal of comparative physiology.
[28] W. H. Miller,et al. Comparative Physiology and Evolution of Vision in Invertebrates , 2011, Handbook of Sensory Physiology.
[29] D M Hunt,et al. The rhodopsin gene of the cuttlefish Sepia officinalis: sequence and spectral tuning. , 1998, The Journal of experimental biology.
[30] P. K. Brown,et al. Visual Pigments of the Octopus and Cuttlefish , 1958, Nature.
[31] C. Chiao,et al. Disruptive Body Patterning of Cuttlefish (Sepia officinalis) Requires Visual Information Regarding Edges and Contrast of Objects in Natural Substrate Backgrounds , 2005, The Biological Bulletin.
[32] Michinomae,et al. STRUCTURAL BASIS FOR WAVELENGTH DISCRIMINATION IN THE BANKED RETINA OF THE FIREFLY SQUID WATASENIA SCINTILLANS , 1994, The Journal of experimental biology.
[33] J. Messenger,et al. Some evidence for colour-blindness in Octopus. , 1973, The Journal of experimental biology.
[34] R. Williamson,et al. Ontogenetic changes in the visual acuity of Sepia officinalis measured using the optomotor response , 2005 .
[35] D. Stavenga,et al. Simple exponential functions describing the absorbance bands of visual pigment spectra , 1993, Vision Research.
[36] M. Vorobyev,et al. Animal colour vision — behavioural tests and physiological concepts , 2003, Biological reviews of the Cambridge Philosophical Society.
[37] J. Cronly-Dillon,et al. Vision & Visual Dysfunction. Vol.2. Evolution of the Eye and Visual System , 1991 .
[38] N. J. Marshall,et al. Colour-blind camouflage , 1996, Nature.
[39] Tom Roffe,et al. Spectral perception in Octopus: A behavioral study , 1975, Vision Research.
[40] R. Hanlon,et al. Adaptive Coloration in Young Cuttlefish (Sepia Officinalis L.): The Morphology and Development of Body Patterns and Their Relation to Behaviour , 1988 .