From Environments to Representations - A Mathematical Theory of Artificial Perceptions

Abstract Perception is the recognition of elements and events in the environment, usually through integration of sensory impressions. It is considered here as a broad, high-level, object centered, phenomenon which happens at and above the level of holistic recognition of objects and events, where semantics begin to play a role. We propose and develop a mathematical theory of artificial perceptions. A basic mathematical category is defined. Its objects are perceptions, consisting of world elements, connotations, and a three-valued true, false, undefined predicative correspondence between them. Morphisms describe paths between perceptions. This structure serves as premises for a mathematical theory. The theory provides rigorous tools of scrutiny that deal with fundamental issues of AI such as the diversity and embodiment of artificial perceptions. It extends and systematizes certain intuitive pre-theoretical conceptions about perception, about improving and/or completing an agent's perceptual grasp, about transition between various perceptions, etc. Mathematical tools and methods are used to formalize reasonable ways to go about producing a meaningful cognitive image of the environment from every perception.

[1]  Ray Jackendoff Semantics and Cognition , 1983 .

[2]  Edward A. Bender,et al.  Mathematical methods in artificial intelligence , 1996 .

[3]  P. Gärdenfors Three levels of inductive inference , 1995 .

[4]  Benjamin C. Pierce,et al.  Basic category theory for computer scientists , 1991, Foundations of computing.

[5]  Dagobert D. Runes The Dictionary Of Philosophy , 1951 .

[6]  M. Stone The theory of representations for Boolean algebras , 1936 .

[7]  R. Goodstein Boolean algebra , 1963 .

[8]  David Kirsh,et al.  Foundations of AI: The Big Issues , 1991, Artif. Intell..

[9]  E. T. Bell,et al.  Men of Mathematics , 1937, Nature.

[10]  M. A. Croon,et al.  Viability of mathematical models in the social and behavioral sciences , 1994 .

[11]  N. Goodman Fact, Fiction, and Forecast , 1955 .

[12]  M. Wertheimer,et al.  A source book of Gestalt psychology. , 1939 .

[13]  S. Maclane,et al.  Categories for the Working Mathematician , 1971 .

[14]  McDermottDrew Nonmonotonic Logic II , 1982 .

[15]  Horst Herrlich,et al.  Category theory , 1979 .

[16]  Gonzalo E. Reyes,et al.  The Logical Foundations of Cognition , 1994 .

[17]  R. F. C. Walters,et al.  Categories and computer science , 1992, Cambridge computer science texts.

[18]  Sally Popkorn,et al.  A Handbook of Categorical Algebra , 2009 .

[19]  John McCarthy,et al.  Circumscription - A Form of Non-Monotonic Reasoning , 1980, Artif. Intell..

[20]  Drew McDermott,et al.  Non-Monotonic Logic I , 1987, Artif. Intell..

[21]  D. Benjamin Change of Representation and Inductive Bias , 1989 .

[22]  S. Maclane,et al.  General theory of natural equivalences , 1945 .

[23]  A. Newell Unified Theories of Cognition , 1990 .

[24]  E. Hutchins Cognition in the wild , 1995 .

[25]  Raymond Reiter,et al.  A Logic for Default Reasoning , 1987, Artif. Intell..

[26]  Immanuel Kant,et al.  Grundlegung zur Metaphysik der Sitten , 1906 .

[27]  Raymond Turner Logics in Artificial Intelligence , 2000, Lecture Notes in Computer Science.

[28]  George Boole,et al.  An Investigation of the Laws of Thought: Frontmatter , 2009 .

[29]  L. M. Faltz,et al.  Boolean semantics for natural language , 1984 .

[30]  S. Haack Philosophy of logics , 1978 .

[31]  N. Cocchiarella,et al.  Situations and Attitudes. , 1986 .

[32]  Robert Zimmer Representation Engineering and Category Theory , 1990 .

[33]  Michael R. Genesereth,et al.  Logical foundations of artificial intelligence , 1987 .

[34]  M. Lowry STRATA: Problem Reformulation and Abstract Data Types , 1990 .

[35]  Yehoshua Bar-Hillel,et al.  The Present Status of Automatic Translation of Languages , 1960, Adv. Comput..

[36]  Grigoris Antoniou,et al.  Nonmonotonic reasoning , 1997 .

[37]  Edward R. Dougherty,et al.  Mathematical methods for artificial intelligence and autonomous systems , 1988 .

[38]  Nils J. Nilsson,et al.  Eye on the Prize , 1995, AI Mag..

[39]  Ranan B. Banerji Similarities in Problem Solving Strategies , 1990 .

[40]  G. Lakoff,et al.  Women, Fire, and Dangerous Things: What Categories Reveal about the Mind , 1988 .

[41]  Salvatore Gaglio,et al.  A Cognitive Architecture for Artificial Vision , 1997, Artif. Intell..

[42]  Michael Barr,et al.  Category theory for computing science , 1995, Prentice Hall International Series in Computer Science.

[43]  M. Arbib,et al.  Arrows, Structures, and Functors: The Categorical Imperative , 1975 .

[44]  Johann A. Makowsky Mental images and the architecture of concepts , 1988 .

[45]  I. Kant,et al.  Grounding for the metaphysics of morals , 1981 .

[46]  Nils J. Nilsson,et al.  Artificial Intelligence Prepares for 2001 , 1983, AI Mag..

[47]  Rolf Herken,et al.  The Universal Turing Machine: A Half-Century Survey , 1992 .

[48]  W. Freeman Societies of Brains: A Study in the Neuroscience of Love and Hate. By W. J. Freeman. Erlbaum: Hillsdale, NJ. 1994. , 1997, Psychological Medicine.