Post-Newtonian quasicircular initial orbits for numerical relativity

We use post-Newtonian (PN) approximations to determine the initial orbital and spin parameters of black hole binaries that lead to low-eccentricity inspirals when evolved with numerical relativity techniques. In particular, we seek initial configurations that lead to very small eccentricities at small separations, as is expected for astrophysical systems. We consider three cases: (i) quasicircular orbits with no radial velocity, (ii) quasicircular orbits with an initial radial velocity determined by radiation reaction, and (iii) parameters obtained form evolution of the PN equations of motion from much larger separations. We study seven cases of spinning, nonprecessing, unequal mass binaries. We then use several definitions of the eccentricity, based on orbital separations and waveform phase and amplitude, and find that using the complete 3PN Hamiltonian for quasicircular orbits to obtain the tangential orbital momentum, and using the highest-known-order radiation reaction expressions to obtain the radial momentum, leads to the lowest eccentricity. The accuracy of this method even exceeds that of inspiral data based on 3PN and 4PN evolutions.

[1]  B. A. Boom,et al.  Binary Black Hole Mergers in the First Advanced LIGO Observing Run , 2016, 1606.04856.

[2]  Bernd Bruegmann,et al.  A Simple Construction of Initial Data for Multiple Black Holes , 1997 .

[3]  Excision boundary conditions for black-hole initial data , 2004, gr-qc/0407078.

[4]  Y. Zlochower,et al.  Foundations of multiple black hole evolutions , 2007, 0711.1165.

[5]  D Huet,et al.  Tests of General Relativity with GW150914. , 2016, Physical review letters.

[6]  B. A. Boom,et al.  ScholarWorks @ UTRGV ScholarWorks @ UTRGV Properties of the Binary Black Hole Merger GW150914 Properties of the Binary Black Hole Merger GW150914 , 2016 .

[7]  Y. Zlochower,et al.  Accurate evolutions of orbiting black-hole binaries without excision. , 2006, Physical review letters.

[8]  D Huet,et al.  GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence , 2016 .

[9]  T. Damour,et al.  Nonlocal-in-time action for the fourth post-Newtonian conservative dynamics of two-body systems , 2014, 1401.4548.

[10]  Modeling gravitational radiation from coalescing binary black holes , 2002, astro-ph/0202469.

[11]  P. C. Peters Gravitational Radiation and the Motion of Two Point Masses , 1964 .

[12]  Accuracy of the post-Newtonian approximation. II. Optimal asymptotic expansion of the energy flux for quasicircular, extreme mass-ratio inspirals into a Kerr black hole , 2011, 1103.6041.

[13]  Exploring the outer limits of numerical relativity , 2013, 1304.3937.

[14]  Marcus Ansorg,et al.  Single-domain spectral method for black hole puncture data , 2004 .

[15]  Lawrence E. Kidder,et al.  Approaching the Post-Newtonian Regime with Numerical Relativity: A Compact-Object Binary Simulation Spanning 350 Gravitational-Wave Cycles. , 2015, Physical review letters.

[16]  Spin Flips and Precession in Black-Hole-Binary Mergers , 2006, gr-qc/0612076.

[17]  Y. Zlochower,et al.  Puncture initial data for black-hole binaries with high spins and high boosts , 2014, 1410.8607.

[18]  Y. Zlochower,et al.  Accuracy Issues for Numerical Waveforms , 2012, 1208.5494.

[19]  Frans Pretorius,et al.  Evolution of binary black-hole spacetimes. , 2005, Physical review letters.

[20]  Von Welch,et al.  Reproducing GW150914: The First Observation of Gravitational Waves From a Binary Black Hole Merger , 2016, Computing in Science & Engineering.

[21]  Transition from inspiral to plunge in precessing binaries of spinning black holes , 2005, gr-qc/0508067.

[22]  Florence March,et al.  2016 , 2016, Affair of the Heart.

[23]  Lawrence E. Kidder,et al.  Modeling the source of GW150914 with targeted numerical-relativity simulations , 2016, 1607.05377.

[24]  J. Steinhoff,et al.  Next-to-leading order gravitational spin(1)-spin(2) dynamics in Hamiltonian form , 2007, 0712.1716.

[25]  J. Healy,et al.  Spin flips in generic black hole binaries , 2015, 1506.04768.

[26]  Jonathan Thornburg,et al.  A Fast Apparent‐Horizon Finder for 3‐Dimensional Cartesian Grids in Numerical Relativity , 2003, gr-qc/0306056.

[27]  Y. Wang,et al.  Directly comparing GW150914 with numerical solutions of Einstein's equations for binary black hole coalescence , 2016, 1606.01262.

[28]  J. Steinhoff,et al.  Equivalence of ADM Hamiltonian and Effective Field Theory approaches at next-to-next-to-leading order spin1-spin2 coupling of binary inspirals , 2014, 1408.5762.

[29]  Harald P. Pfeiffer,et al.  Simulations of unequal-mass black hole binaries with spectral methods , 2012, 1206.3015.

[30]  K. Chatziioannou,et al.  Tidal heating and torquing of a Kerr black hole to next-to-leading order in the tidal coupling , 2012, 1211.1686.

[31]  T. Damour,et al.  Fourth post-Newtonian effective one-body dynamics , 2015, 1502.07245.

[32]  G. Schāfer,et al.  Higher-order-in-spin interaction Hamiltonians for binary black holes from Poincaré invariance , 2008, 0809.2208.

[33]  Dae-Il Choi,et al.  Gravitational-wave extraction from an inspiraling configuration of merging black holes. , 2005, Physical review letters.

[34]  J. Steinhoff,et al.  Next-to-next-to-leading order gravitational spin-orbit coupling via the effective field theory for spinning objects in the post-Newtonian scheme , 2015, 1506.05056.

[35]  Olaf Dreyer,et al.  Introduction to isolated horizons in numerical relativity , 2003 .

[36]  S. Ossokine,et al.  Comparing post-Newtonian and numerical relativity precession dynamics , 2015, 1502.01747.

[37]  Eric Poisson,et al.  Spacetime and Geometry: An Introduction to General Relativity , 2005 .

[38]  J. Steinhoff,et al.  Leading order finite size effects with spins for inspiralling compact binaries , 2014, 1410.2601.

[39]  Accuracy of the post-Newtonian approximation: Optimal asymptotic expansion for quasicircular, extreme-mass ratio inspirals , 2008 .

[40]  C. Ott,et al.  The Einstein Toolkit: a community computational infrastructure for relativistic astrophysics , 2011, 1111.3344.

[41]  J. York,et al.  Time-asymmetric initial data for black holes and black-hole collisions , 1980 .

[42]  T. Damour,et al.  Hamiltonian of two spinning compact bodies with next-to-leading order gravitational spin-orbit coupling , 2007, 0711.1048.

[43]  Andrea Taracchini,et al.  Reducing orbital eccentricity of precessing black-hole binaries , 2010, 1012.1549.

[44]  J. Steinhoff,et al.  ADM canonical formalism for gravitating spinning objects , 2008, 0805.3136.

[45]  P. Marronetti,et al.  High-spin binary black hole mergers , 2007, 0709.2160.

[46]  W. Marsden I and J , 2012 .

[47]  Sean M. Carroll,et al.  Spacetime and Geometry: An Introduction to General Relativity , 2003 .

[48]  G. Lovelace,et al.  Binary-black-hole initial data with nearly extremal spins , 2008, 0805.4192.

[49]  J. Steinhoff,et al.  Spin-squared Hamiltonian of next-to-leading order gravitational interaction , 2008, 0809.2200.

[50]  Harald P. Pfeiffer,et al.  Reducing orbital eccentricity in binary black hole simulations , 2007 .

[51]  T. Damour,et al.  Poincare invariance in the ADM Hamiltonian approach to the general relativistic two-body problem , 2000 .

[52]  Bernard J. Kelly,et al.  The lazarus project. II. Spacelike extraction with the quasi-Kinnersley tetrad , 2006 .

[53]  Harald P. Pfeiffer,et al.  Measuring orbital eccentricity and periastron advance in quasicircular black hole simulations , 2010, 1004.4697.

[54]  Accuracy of the post-Newtonian approximation for extreme mass ratio inspirals from a black-hole perturbation approach , 2016, 1601.02174.

[55]  M. Campanelli,et al.  Accurate black hole evolutions by fourth-order numerical relativity , 2005 .

[56]  José A. González,et al.  Reducing eccentricity in black-hole binary evolutions with initial parameters from post-Newtonian inspiral , 2007, 0706.0904.

[57]  J. Healy,et al.  Flip-flopping binary black holes. , 2014, Physical review letters.

[58]  B. A. Boom,et al.  Improved Analysis of GW150914 Using a Fully Spin-Precessing Waveform Model , 2016, 1606.01210.

[59]  S. Husa,et al.  An efficient iterative method to reduce eccentricity in numerical-relativity simulations of compact binary inspiral , 2012, 1203.4258.

[60]  Higher-order spin effects in the amplitude and phase of gravitational waveforms emitted by inspiraling compact binaries: Ready-to-use gravitational waveforms , 2009 .

[61]  Hiroyuki Nakano,et al.  Comparison of Numerical and Post-Newtonian Waveforms for Generic Precessing Black-Hole Binaries , 2008, 0808.0713.

[62]  B. Whiting,et al.  Black-hole puncture initial data with realistic gravitational wave content , 2007, 0704.0628.

[63]  Scott H. Hawley,et al.  Evolutions in 3D numerical relativity using fixed mesh refinement , 2003, gr-qc/0310042.

[64]  Circular orbits and spin in black-hole initial data , 2006, gr-qc/0605053.

[65]  A. Buonanno,et al.  Tail-induced spin-orbit effect in the gravitational radiation of compact binaries , 2011, 1104.5659.

[66]  J. Steinhoff,et al.  Next‐to‐next‐to‐leading order post‐Newtonian linear‐in‐spin binary Hamiltonians , 2013, 1302.6723.