Ordering states with Tsallis relative $$\alpha $$α-entropies of coherence

In this paper, we study the ordering states with Tsallis relative $$\alpha $$α-entropies of coherence and $$l_{1}$$l1 norm of coherence for single-qubit states. Firstly, we show that any Tsallis relative $$\alpha $$α-entropies of coherence and $$l_{1}$$l1 norm of coherence give the same ordering for single-qubit pure states. However, they do not generate the same ordering for some high-dimensional states, even though these states are pure. Secondly, we also consider three special Tsallis relative $$\alpha $$α-entropies of coherence for $$\alpha =2, 1, \frac{1}{2}$$α=2,1,12 and show these three measures and $$l_{1}$$l1 norm of coherence will not generate the same ordering for some single-qubit mixed states. Nevertheless, they may generate the same ordering if we only consider a special subset of single-qubit mixed states. Furthermore, we find that any two of these three special measures generate different ordering for single-qubit mixed states. Finally, we discuss the degree of violation of between $$l_{1}$$l1 norm of coherence and Tsallis relative $$\alpha $$α-entropies of coherence. In a sense, this degree can measure the difference between these two coherence measures in ordering states.

[1]  V. Vedral,et al.  Quantum processes which do not use coherence , 2015, 1512.02085.

[2]  Carlton M. Caves,et al.  ENTROPIC MEASURES OF NON-CLASSICAL CORRELATIONS , 2011, 1105.4920.

[3]  C. L. Liu,et al.  Ordering states with coherence measures , 2016, Quantum Inf. Process..

[4]  Alexey E. Rastegin,et al.  Quantum-coherence quantifiers based on the Tsallis relative α entropies , 2015, 1512.06652.

[5]  F. Hiai,et al.  Quantum f-divergences and error correction , 2010, 1008.2529.

[6]  Xiongfeng Ma,et al.  Intrinsic randomness as a measure of quantum coherence , 2015, 1505.04032.

[7]  Xing Xiao,et al.  Quantum coherence in multipartite systems , 2015, 1506.01773.

[8]  T. Rudolph,et al.  Quantum coherence, time-translation symmetry and thermodynamics , 2014, 1410.4572.

[9]  J. Åberg Quantifying Superposition , 2006, quant-ph/0612146.

[10]  S. Furuichi,et al.  Fundamental properties of Tsallis relative entropy , 2004, cond-mat/0406178.

[11]  F. Brandão,et al.  Reversible Framework for Quantum Resource Theories. , 2015, Physical review letters.

[12]  F. Brandão,et al.  Resource theory of quantum states out of thermal equilibrium. , 2011, Physical review letters.

[13]  M. S. Zubairy,et al.  Quantum optics: Frontmatter , 1997 .

[14]  Ujjwal Sen,et al.  Can there be quantum correlations in a mixture of two separable states? , 2003 .

[15]  Gerardo Adesso,et al.  Frozen quantum coherence. , 2014, Physical review letters.

[16]  Heng Fan,et al.  Quantum coherence and correlations in quantum system , 2015, Scientific reports.

[17]  Arun Kumar Pati,et al.  Duality of quantum coherence and path distinguishability , 2015, 1503.02990.

[18]  Mario Ziman,et al.  Entanglement-induced state ordering under local operations , 2006 .

[19]  Alán Aspuru-Guzik,et al.  Thermodynamics of quantum coherence , 2013, 1308.1245.

[20]  A. Winter,et al.  Operational Resource Theory of Coherence. , 2015, Physical review letters.

[21]  Roberta Zambrini,et al.  Discording power of quantum evolutions. , 2013, Physical review letters.

[22]  Heng Fan,et al.  Fidelity and trace-norm distances for quantifying coherence , 2014, 1410.8327.

[23]  G. Gour,et al.  Low-temperature thermodynamics with quantum coherence , 2014, Nature Communications.

[24]  Zbigniew Walczak,et al.  On two-qubit states ordering with quantum discords , 2011, 1109.4132.

[25]  Heng Fan,et al.  Quantifying coherence in infinite-dimensional systems , 2015, 1505.05270.

[26]  A. Jenčová REVERSIBILITY CONDITIONS FOR QUANTUM OPERATIONS , 2011, 1107.0453.

[27]  A. Rau,et al.  Quantum discord for two-qubit X states , 2010, 1002.3429.

[28]  Eric Chitambar,et al.  Are Incoherent Operations Physically Consistent? -- A Critical Examination of Incoherent Operations , 2016 .

[29]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[30]  S. Virmani,et al.  Ordering states with entanglement measures , 1999, quant-ph/9911119.

[31]  Karol Zyczkowski,et al.  Relativity of Pure States Entanglement , 2002 .

[32]  H. Fan,et al.  Maximally coherent states and coherence-preserving operations , 2015, 1511.02576.

[33]  J. Eisert,et al.  A comparison of entanglement measures , 1998, quant-ph/9807034.

[34]  D. M. Tong,et al.  Alternative framework for quantifying coherence , 2016, 1606.03181.

[35]  Eric Chitambar,et al.  Critical Examination of Incoherent Operations and a Physically Consistent Resource Theory of Quantum Coherence. , 2016, Physical review letters.

[36]  A. Miranowicz,et al.  Ordering two-qubit states with concurrence and negativity , 2004, quant-ph/0404053.

[37]  Michael J. W. Hall,et al.  Complementarity relations for quantum coherence , 2015, 1508.03240.

[38]  M. Horodecki,et al.  Fundamental limitations for quantum and nanoscale thermodynamics , 2011, Nature Communications.

[39]  J. Åberg Catalytic coherence. , 2013, Physical review letters.

[40]  Mark Hillery,et al.  Relations between Coherence and Path Information. , 2015, Physical review letters.

[41]  Gerardo Adesso,et al.  Measuring Quantum Coherence with Entanglement. , 2015, Physical review letters.

[42]  Jianwei Xu,et al.  Quantifying coherence of Gaussian states , 2015, 1510.02916.

[43]  M. Plenio,et al.  Quantifying coherence. , 2013, Physical review letters.

[44]  Belgium,et al.  Maximal entanglement versus entropy for mixed quantum states , 2002, quant-ph/0208138.

[45]  Maciej Lewenstein,et al.  Trace distance measure of coherence , 2015, ArXiv.

[46]  Yongming Li,et al.  General Monogamy of Tsallis-q Entropy Entanglement in Multiqubit Systems , 2016, 1604.07616.

[47]  Gerardo Adesso,et al.  Robustness of Coherence: An Operational and Observable Measure of Quantum Coherence. , 2016, Physical review letters.