Estimation of Nonparametric Conditional Moment Models with Possibly Nonsmooth Moments

This paper studies nonparametric estimation of conditional moment models in which the residual functions could be nonsmooth with respect to the unknown functions of endogenous variables. It is a problem of nonparametric nonlinear instrumental variables (IV) estimation, and a difficult nonlinear ill-posed inverse problem with an unknown operator. We first propose a penalized sieve minimum distance (SMD) estimator of the unknown functions that are identified via the conditional moment models. We then establish its consistency and convergence rate (in strong metric), allowing for possibly non-compact function parameter spaces, possibly non-compact finite or infinite dimensional sieves with flexible lower semicompact or convex penalty, or finite dimensional linear sieves without penalty. Under relatively low-level sufficient conditions, and for both mildly and severely ill-posed problems, we show that the convergence rates for the nonlinear ill-posed inverse problems coincide with the known minimax optimal rates for the nonparametric mean IV regression. We illustrate the theory by two important applications: root-n asymptotic normality of the plug-in penalized SMD estimator of a weighted average derivative of a nonparametric nonlinear IV regression, and the convergence rate of a nonparametric additive quantile IV regression. We also present a simulation study and an empirical estimation of a system of nonparametric quantile IV Engel curves.

[1]  W. Newey,et al.  Instrumental variable estimation of nonparametric models , 2003 .

[2]  Nicolai Bissantz,et al.  Convergence Rates of General Regularization Methods for Statistical Inverse Problems and Applications , 2007, SIAM J. Numer. Anal..

[3]  Albert Cohen,et al.  Adaptive Wavelet Galerkin Methods for Linear Inverse Problems , 2004, SIAM J. Numer. Anal..

[4]  W. Newey,et al.  Convergence rates and asymptotic normality for series estimators , 1997 .

[5]  L. Mattner,et al.  Some incomplete but boundedly complete location families , 1993 .

[6]  A. C. van der Klauw,et al.  Nonparametric identification , 2020, Modeling, Identification and Simulation of Dynamical Systems.

[7]  Xiaohong Chen Chapter 76 Large Sample Sieve Estimation of Semi-Nonparametric Models , 2007 .

[8]  A. Chesher Identification in Nonseparable Models , 2003 .

[9]  Y. Meyer Wavelets and Operators , 1993 .

[10]  Marc Hoffmann,et al.  Nonlinear estimation for linear inverse problems with error in the operator , 2008, 0803.1956.

[11]  Donald W. K. Andrews,et al.  Nonparametric Kernel Estimation for Semiparametric Models , 1995, Econometric Theory.

[12]  Xiaohong Chen,et al.  Semi‐Nonparametric IV Estimation of Shape‐Invariant Engel Curves , 2003 .

[13]  P. Hall,et al.  Nonparametric methods for inference in the presence of instrumental variables , 2003, math/0603130.

[14]  Vladimir Koltchinskii,et al.  On inverse problems with unknown operators , 2001, IEEE Trans. Inf. Theory.

[15]  O. Scherzer,et al.  A convergence rates result for Tikhonov regularization in Banach spaces with non-smooth operators , 2007 .

[16]  Xiaohong Chen,et al.  ON RATE OPTIMALITY FOR ILL-POSED INVERSE PROBLEMS IN ECONOMETRICS , 2007, Econometric Theory.

[17]  Xiaohong Chen,et al.  Land of addicts? an empirical investigation of habit-based asset pricing models , 2009 .

[18]  H. Engl,et al.  Regularization of Inverse Problems , 1996 .

[19]  V. Chernozhukov,et al.  An IV Model of Quantile Treatment Effects , 2002 .

[20]  B. Silverman,et al.  Maximum Penalized Likelihood Estimation , 2006 .

[21]  Yuhong Yang,et al.  Information-theoretic determination of minimax rates of convergence , 1999 .

[22]  Joel L. Horowitz,et al.  Nonparametric Instrumental Variables Estimation of a Quantile Regression Model , 2006 .

[23]  W. Wong,et al.  Convergence Rate of Sieve Estimates , 1994 .

[24]  J. Florens,et al.  Linear Inverse Problems in Structural Econometrics Estimation Based on Spectral Decomposition and Regularization , 2003 .

[25]  Chunrong Ai,et al.  Estimation of possibly misspecified semiparametric conditional moment restriction models with different conditioning variables , 2007 .

[26]  Demian Pouzo,et al.  Efficient Estimation of Semiparametric Conditional Moment Models with Possibly Nonsmooth Residuals , 2008 .

[27]  E. Zeidler Nonlinear Functional Analysis and its Applications: III: Variational Methods and Optimization , 1984 .

[28]  W. Newey,et al.  Uniform Convergence in Probability and Stochastic Equicontinuity , 1991 .

[29]  Victor Chernozhukov,et al.  Instrumental variable estimation of nonseparable models , 2007 .

[30]  Xiaotong Shen ON THE METHOD OF PENALIZATION , 1998 .

[31]  V. Chernozhukov,et al.  Nonparametric Instrumental Variable Estimators of Structural Quantile Effects , 2011 .

[32]  Joel L. Horowitz,et al.  Rate-optimal estimation for a general class of nonparametric regression models with unknown link functions , 2007, 0803.2999.

[33]  P. Eggermont,et al.  Maximum penalized likelihood estimation , 2001 .

[34]  J. Florens,et al.  Nonparametric Instrumental Regression , 2010 .

[35]  T. Severini,et al.  SOME IDENTIFICATION ISSUES IN NONPARAMETRIC LINEAR MODELS WITH ENDOGENOUS REGRESSORS , 2006, Econometric Theory.

[36]  Jianhua Z. Huang Projection estimation in multiple regression with application to functional ANOVA models , 1998 .

[37]  E. Zeidler Nonlinear functional analysis and its applications , 1988 .

[38]  Jianhua Z. Huang Local asymptotics for polynomial spline regression , 2003 .

[39]  A. Tsybakov,et al.  Oracle inequalities for inverse problems , 2002 .

[40]  Xiaohong Chen,et al.  Efficient Estimation of Models with Conditional Moment Restrictions Containing Unknown Functions , 2003 .

[41]  S. R. Jammalamadaka,et al.  Empirical Processes in M-Estimation , 2001 .

[42]  I. Daubechies,et al.  An iterative thresholding algorithm for linear inverse problems with a sparsity constraint , 2003, math/0307152.

[43]  H. Triebel,et al.  Function Spaces, Entropy Numbers, Differential Operators: Function Spaces , 1996 .