Chitin and collagen as universal and alternative templates in biomineralization

Biomineralized structures and tissues are composites, containing a biologically produced organic matrix and nano- or microscale amorphous or crystalline minerals. Two main examples of organic matrices – the amino-polysaccharide chitin and the asymmetric protein collagen – are presented and discussed as the basic structural modules and organo-templates for calcium and silica biomineralization in nature. Both serve as templates, providing preferential sites for nucleation and controlling the location and orientation of mineral phases. Here, for the first time, chitin and collagen are analysed from evolutionary, structural, and functional points of view with respect to their templating properties in calcification and silicification phenomena, using both in vivo and in vitro data. It is proposed that these biopolymers be characterized as fundamental templates in biomineralization, inasmuch as they are very ancient from an evolutionary point of view, common to many species and biological systems with a global distribution. The two polymers also exhibit very similar hierarchical structural organizations, in spite of the possible alternatives they provide in chemical nature and origin. In addition, the phenomenon of multi-phase mineralization – where two minerals, amorphous and crystalline CaCO3, form from one biomolecule, chitin – is also described, analysed, and discussed for the first time.

[1]  H. Worch,et al.  A Novel Biomimetic Hybrid Material Made of Silicified Collagen: Perspectives for Bone Replacement , 2007 .

[2]  C. Ohtsuki,et al.  Synthesis of Osteoconductive Organic—Inorganic Nanohybrids through Modification of Chitin with Alkoxysilane and Calcium Chloride , 2007, Journal of biomaterials applications.

[3]  H. Ehrlich,et al.  A modern approach to demineralization of spicules in glass sponges (Porifera: Hexactinellida) for the purpose of extraction and examination of the protein matrix , 2006, Russian Journal of Marine Biology.

[4]  P. Fratzl,et al.  Nanoscale deformation mechanisms in bone. , 2009, Nano letters.

[5]  S. Stickel,et al.  Monophyletic origins of the metazoa: an evolutionary link with fungi , 1993, Science.

[6]  R. Hoffmann,et al.  Mineralization of biomimetically carboxymethylated collagen fibrils in a model dual membrane diffusion system , 2009 .

[7]  G. Lehmann,et al.  A code for lysine modifications of a silica biomineralizing silaffin protein. , 2007, Angewandte Chemie.

[8]  S. Koutsopoulos,et al.  Crystallization of calcite on chitin , 1997 .

[9]  J. Erez,et al.  Reciprocal Changes in Calcification of the Gastrolith and Cuticle During the Molt Cycle of the Red Claw Crayfish Cherax quadricarinatus , 2008, The Biological Bulletin.

[10]  D. Eglin,et al.  Bone matrix like assemblies of collagen: from liquid crystals to gels and biomimetic materials. , 2005, Micron.

[11]  S. Mann Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry , 2002 .

[12]  A. Geçer,et al.  Synthesis of chitin calcium phosphate composite in different growth media , 2008 .

[13]  T. Schäffer,et al.  Structure and interactions of calcite spherulites with α-chitin in the brown shrimp (Penaeus aztecus) shell , 2007 .

[14]  P. Donoghue,et al.  Origin and early evolution of vertebrate skeletonization , 2002, Microscopy research and technique.

[15]  D. Bamford,et al.  Capsomer proteins of bacteriophage PRD1, a bacterial virus with a membrane. , 1990, Virology.

[16]  P. Willmer Invertebrate Relationships: Frontmatter , 1990 .

[17]  J. Gutzmer,et al.  Organotemplate silica deposition in Neoproterozoic deep‐marine environments: evidence from the Penganga Group, Adilabad, India , 2004 .

[18]  E. Atkins Conformations in polysaccharides and complex carbohydrates , 1985, Journal of Biosciences.

[19]  Steve Weiner,et al.  Mollusk shell formation: a source of new concepts for understanding biomineralization processes. , 2006, Chemistry.

[20]  E. M. Carlisle A silicon requirement for normal skull formation in chicks. , 1980, The Journal of nutrition.

[21]  Eugene Khor,et al.  Hydroxyapatite-chitin materials as potential tissue engineered bone substitutes. , 2004, Biomaterials.

[22]  Y Bouligand,et al.  Twisted fibrous arrangements in biological materials and cholesteric mesophases. , 1972, Tissue & cell.

[23]  M. Cusack,et al.  The nature of siliceous mosaics forming the first shell of the brachiopod Discinisca. , 2001, Journal of structural biology.

[24]  J. Pośpiech,et al.  Spatial arrangement of orientations in rolled copper , 1983 .

[25]  D. M. Nelson,et al.  Morphogenesis of opal teeth in calanoid copepods , 1990 .

[26]  R. Garrone,et al.  Biology of Invertebrate and Lower Vertebrate Collagens , 2012, NATO ASI Series.

[27]  M. Rinaudo,et al.  Chitin and chitosan: Properties and applications , 2006 .

[28]  M. Giraud‐Guille,et al.  A Novel Route to Collagen-Silica Biohybrids , 2002 .

[29]  K. Beck,et al.  Supercoiled protein motifs: the collagen triple-helix and the alpha-helical coiled coil. , 1998, Journal of structural biology.

[30]  H. Ehrlich,et al.  Hydroxyapatite Crystal Growth on Modified Collagen I-Templates in a Model Dual Membrane Diffusion System† , 2005 .

[31]  M. Mulisch,et al.  Comparison of Chitin Fibril Structure and Assembly in Three Unicellular Organisms , 1986 .

[32]  I. Pastan,et al.  The collagen gene: Evidence for its evolutionary assembly by amplification of a DNA segment containing an exon of 54 bp , 1980, Cell.

[33]  Stephen Mann,et al.  Molecular recognition in biomineralization , 1988, Nature.

[34]  H. R. Preisig Siliceous structures and silicification in flagellated protists , 1994, Protoplasma.

[35]  Siddharth V. Patwardhan,et al.  Interactions of biomolecules with inorganic materials: principles, applications and future prospects , 2007 .

[36]  J. C. Lewis,et al.  Characteristics of Carbonates of Gorgonian Axes (Coelenterata, Octocorallia). , 1992, The Biological bulletin.

[37]  B. N. Bachra,et al.  ORIENTED PRECIPITATION OF INORGANIC CRYSTALS IN FIBROUS MATRICES. , 1963, Archives of oral biology.

[38]  P. Lopez,et al.  Biomimetic dual templating of silica by polysaccharide/protein assemblies. , 2008, Colloids and surfaces. B, Biointerfaces.

[39]  R. Lakes Materials with structural hierarchy , 1993, Nature.

[40]  J. N. Cameron Unusual aspects of calcium metabolism in aquatic animals. , 1990, Annual review of physiology.

[41]  Julian F. V. Vincent,et al.  Arthropod cuticle: A natural composite shell system , 2002 .

[42]  R. Jayakumar,et al.  Synthesis, characterization and thermal properties of chitin-g-poly(ɛ-caprolactone) copolymers by using chitin gel , 2008 .

[43]  M. Iijima,et al.  Orientation of apatite and organic matrix inLingula unguis shell , 1990, Calcified Tissue International.

[44]  Peter Fratzl,et al.  Biomimetic materials research: what can we really learn from nature's structural materials? , 2007, Journal of The Royal Society Interface.

[45]  G. Lehmann,et al.  Biomineralization in diatoms: Characterization of novel polyamines associated with silica , 2005, FEBS letters.

[46]  N. Kröger,et al.  Polycationic peptides from diatom biosilica that direct silica nanosphere formation. , 1999, Science.

[47]  A. Collins,et al.  Phylogeny and evolution of glass sponges (porifera, hexactinellida). , 2008, Systematic biology.

[48]  J. Revol,et al.  High-resolution electron microscopy of β-chitin microfibrils , 1986 .

[49]  M. Tsuzaki,et al.  Collagen in the spicule organic matrix of the gorgonian Leptogorgia virgulata. , 1990, The Biological Bulletin.

[50]  M. Sumper,et al.  Silica Biomineralisation in Diatoms: The Model Organism Thalassiosira pseudonana , 2008, Chembiochem : a European journal of chemical biology.

[51]  D. Maglott,et al.  A genome-wide analysis of biomineralization-related proteins in the sea urchin Strongylocentrotus purpuratus. , 2006, Developmental biology.

[52]  Nicole J. Crane,et al.  Raman spectroscopic evidence for octacalcium phosphate and other transient mineral species deposited during intramembranous mineralization. , 2006, Bone.

[53]  M. Mulisch,et al.  Localization of chitin on ultrathin sections of cysts of two ciliated protozoa,Blepharisma undulans andPseudomicrothorax dubius, using colloidal gold conjugated wheat germ agglutinin , 1989, Protoplasma.

[54]  S. Baldauf,et al.  The protistan origins of animals and fungi. , 2006, Molecular biology and evolution.

[55]  P. Fratzl,et al.  Microtexture and Chitin/Calcite Orientation Relationship in the Mineralized Exoskeleton of the American Lobster , 2008 .

[56]  Steve Weiner,et al.  Taking Advantage of Disorder: Amorphous Calcium Carbonate and Its Roles in Biomineralization , 2003 .

[57]  S. Bartnicki-García,et al.  Microfibril assembly by granules of chitin synthetase. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[58]  R. P. Thompson,et al.  Orthosilicic acid stimulates collagen type 1 synthesis and osteoblastic differentiation in human osteoblast-like cells in vitro. , 2003, Bone.

[59]  Eugene Khor,et al.  Implantable applications of chitin and chitosan. , 2003, Biomaterials.

[60]  W. Herth Calcofluor white and Congo red inhibit chitin microfibril assembly of Poterioochromonas: evidence for a gap between polymerization and microfibril formation , 1980, The Journal of cell biology.

[61]  D. Raabe,et al.  Crystallographic Texture of the Arthropod Cuticle Using Synchrotron Wide Angle X-ray Diffraction , 2007 .

[62]  H. Nagasawa,et al.  Self-organization of oriented calcium carbonate/polymer composites: effects of a matrix peptide isolated from the exoskeleton of a crayfish. , 2006, Angewandte Chemie.

[63]  H. Ehrlich,et al.  Collagen: A Huge Matrix in Glass Sponge Flexible Spicules of the Meter‐Long Hyalonema sieboldi , 2008 .

[64]  Yunfeng Jiao,et al.  The co-effect of collagen and magnesium ions on calcium carbonate biomineralization , 2006 .

[65]  M. Sumper,et al.  A Phase Separation Model for the Nanopatterning of Diatom Biosilica , 2002, Science.

[66]  Robert J. Kane,et al.  Hydroxyapatite-reinforced polymer biocomposites for synthetic bone substitutes , 2008 .

[67]  M. Poulicek Chitin in gastropod operculi , 1983 .

[68]  M. M. Attwood,et al.  The association between chitin and protein in some chitinous tissues , 1967 .

[69]  P. Donoghue,et al.  Early evolution of vertebrate skeletal tissues and cellular interactions, and the canalization of skeletal development. , 2006, Journal of experimental zoology. Part B, Molecular and developmental evolution.

[70]  S. Weiner Biomineralization: a structural perspective. , 2008, Journal of structural biology.

[71]  H. Wenk,et al.  Crystal alignment of carbonated apatite in bone and calcified tendon: results from quantitative texture analysis. , 1999, Bone.

[72]  Clément Sanchez,et al.  Biomimetism and bioinspiration as tools for the design of innovative materials and systems , 2005, Nature materials.

[73]  A. Palazoglu,et al.  Nanoscale heterogeneity promotes energy dissipation in bone. , 2007, Nature materials.

[74]  S. Nayar,et al.  Protein induced morphosynthesis of calcium carbonate , 2003 .

[75]  P. Ledger Types of collagen fibres in the calcareous sponges Sycon and Leucandra. , 1974, Tissue & cell.

[76]  S. Weiner,et al.  Interactions between acidic matrix macromolecules and calcium phosphate ester crystals: relevance to carbonate apatite formation in biomineralization , 1992, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[77]  K. Beck,et al.  Supercoiled Protein Motifs: The Collagen Triple-Helix and the α-Helical Coiled Coil , 1998 .

[78]  A. Odier Mémoire sur la composition chimique des parties cornées des insectes , 1823 .

[79]  L. Skibsted,et al.  Calcium carbonate crystallization in the α-chitin matrix of the shell of pink shrimp, Pandalus borealis, during frozen storage , 1997 .

[80]  T. Miyashita,et al.  Evolution of hard-tissue mineralization: comparison of the inner skeletal system and the outer shell system , 2004, Journal of Bone and Mineral Metabolism.

[81]  M. Sumper,et al.  Silacidins: highly acidic phosphopeptides from diatom shells assist in silica precipitation in vitro. , 2008, Angewandte Chemie.

[82]  R. Laine,et al.  Chitin in the epidermal cuticle of a vertebrate (Paralipophrys trigloides, Blenniidae, Teleostei) , 1993, Experientia.

[83]  Vera M. Kolb,et al.  Testing the role of silicic acid and bioorganic materials in the formation of rock coatings , 2004, SPIE Optics + Photonics.

[84]  J. Sugiyama,et al.  The chitin system in the tubes of deep sea hydrothermal vent worms , 1992 .

[85]  M. Schultze Die Hyalonemen : Ein Beitrag zur Naturgeschichte der Spongien , 2022 .

[86]  Patricia M. Dove,et al.  An Overview of Biomineralization Processes and the Problem of the Vital Effect , 2003 .

[87]  H. Chanzy,et al.  An electron microscope and electron diffraction study of the effect of calcofluor and congo red on the biosynthesis of chitin in vitro. , 1994, Archives of biochemistry and biophysics.

[88]  P. Novaes,et al.  The development and evolution of mammalian enamel: structural and functional aspects , 2005 .

[89]  A. Boskey Pathogenesis of cartilage calcification: Mechanisms of crystal deposition in cartilage , 2002, Current rheumatology reports.

[90]  H. Ehrlich,et al.  Principles of demineralization: modern strategies for the isolation of organic frameworks. Part I. Common definitions and history. , 2008, Micron.

[91]  E. DiMasi,et al.  Templated biomineralization on self-assembled protein fibers , 2006, Proceedings of the National Academy of Sciences.

[92]  J. Harding,et al.  The challenge of biominerals to simulations , 2006 .

[93]  D. Vaulot,et al.  THE CHITINOUS NATURE OF FILAMENTS EJECTED BY PHAEOCYSTIS (PRYMNESIOPHYCEAE) 1 , 1997 .

[94]  W. Winter,et al.  Alpha-chitin nanocrystals prepared from shrimp shells and their specific surface area measurement. , 2007, Biomacromolecules.

[95]  Elliot P. Douglas,et al.  Bone structure and formation: A new perspective , 2007 .

[96]  S. Lorenz,et al.  Biomimetic control of size in the polyamine-directed formation of silica nanospheres. , 2003, Angewandte Chemie.

[97]  K. Weiss,et al.  Evolutionary genetics of vertebrate tissue mineralization: the origin and evolution of the secretory calcium-binding phosphoprotein family. , 2006, Journal of experimental zoology. Part B, Molecular and developmental evolution.

[98]  Société de biologie Comptes Rendus des Séances de la Société de Biologie et de ses Filiales , 2009 .

[99]  R. Evershed,et al.  Preservation of Chitin in 25-Million-Year-Old Fossils , 1997 .

[100]  D. Eglin,et al.  Collagen-silica hybrid materials: sodium silicate and sodium chloride effects on type I collagen fibrillogenesis. , 2005, Bio-medical materials and engineering.

[101]  R. Bear,et al.  X-ray diffraction evidence of collagen-type protein fibers in the Echinodermata, Coelenterata and Porifera. , 1949, The Journal of experimental zoology.

[102]  Shiro Kobayashi,et al.  Artificial Chitin Spherulites Composed of Single Crystalline Ribbons of α-Chitin via Enzymatic Polymerization , 2000 .

[103]  M. Richardson,et al.  Haeckel's ABC of evolution and development , 2002, Biological reviews of the Cambridge Philosophical Society.

[104]  M. Sumper,et al.  Biomimetic synthesis of silica nanospheres depends on the aggregation and phase separation of polyamines in aqueous solution , 2004 .

[105]  R. Hoffmann,et al.  Modification of collagen in vitro with respect to formation of Nepsilon-carboxymethyllysine. , 2009, International journal of biological macromolecules.

[106]  H. Ehrlich,et al.  Insights into Chemistry of Biological Materials: Newly Discovered Silica-Aragonite-Chitin Biocomposites in Demosponges , 2010 .

[107]  S. Weiner Transient precursor strategy in mineral formation of bone. , 2006, Bone.

[108]  Himadri S. Gupta,et al.  Nanoscale Mechanisms of Bone Deformation and Fracture , 2008 .

[109]  David G. Mann,et al.  Biodiversity, biogeography and conservation of diatoms , 1996 .

[110]  E. Schnepf,et al.  Chitinous fibrils in the lorica of the flagellate chrysophyte Poteriochromonas stipitata (syn. Ochromonas malhamensis) , 1977, The Journal of cell biology.

[111]  N. E. Dweltz,et al.  Studies on chitan (β-(1 → 4)-linked 2-acetamido-2-deoxy-D-glucan) fibers of the diatom Thalassiosira fluviatilis, Hustedt. III. The structure of chitan from x-ray diffraction and electron microscope observations , 1968 .

[112]  J. Sugiyama,et al.  Structural study of α chitin from the grasping spines of the arrow worm ( Sagitta spp. ) , 1995 .

[113]  J. Machado,et al.  Studies on chitin and calcification in the inner layers of the shell of Anodonta cygnea , 1991, Journal of Comparative Physiology B.

[114]  J. Aizenberg,et al.  Skeleton of Euplectella sp.: Structural Hierarchy from the Nanoscale to the Macroscale , 2005, Science.

[115]  T. Koetzle,et al.  Biological Control of Crystal Texture: A Widespread Strategy for Adapting Crystal Properties to Function , 1993, Science.

[116]  A. Knoll Biomineralization and Evolutionary History , 2003 .

[117]  Yasuaki Seki,et al.  Structural biological composites: An overview , 2006 .

[118]  I. Weiss,et al.  The distribution of chitin in larval shells of the bivalve mollusk Mytilus galloprovincialis. , 2006, Journal of structural biology.

[119]  H. Merzendorfer,et al.  Chitin metabolism in insects: structure, function and regulation of chitin synthases and chitinases , 2003, Journal of Experimental Biology.

[120]  W. Goldberg Evidence of a sclerotized collagen from the skeleton of a gorgonian coral. , 1974, Comparative biochemistry and physiology. B, Comparative biochemistry.

[121]  J. Wessels,et al.  Wall Structure, Wall Growth, and Fungal Cell Morphogenesis , 1990 .

[122]  H. Ludwig Chitin , 2022 .

[123]  A. Navrotsky Energetic clues to pathways to biomineralization: precursors, clusters, and nanoparticles. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[124]  C. Phares,et al.  Effects of spirometrid plerocercoids on several species of lower vertebrates. , 1974, Comparative biochemistry and physiology. A, Comparative physiology.

[125]  Manuel Maldonado,et al.  Choanoflagellates, choanocytes, and animal multicellularity , 2005 .

[126]  S C Cowin,et al.  How is a tissue built? , 2000, Journal of biomechanical engineering.

[127]  M. Radmacher,et al.  Biomineralizing Proteins with Emphasis on Invertebrate-mineralized Structures , 2003 .

[128]  G. Mosser,et al.  Possible transient liquid crystal phase during the laying out of connective tissues: α-chitin and collagen as models , 2006 .

[129]  J. Putaux,et al.  Structural data on the intra-crystalline swelling of β-chitin , 2000 .

[130]  R. Evershed,et al.  Chitin in the fossil record: Identification and quantification of D-glucosamine , 2001 .

[131]  M. Miglietta Hydractinia antonii sp. nov.: a new, partially calcified hydractiniid (Cnidaria: Hydrozoa: Hydractiniidae) from Alaska , 2006, Journal of the Marine Biological Association of the United Kingdom.

[132]  S. Ichinose,et al.  Self-organization mechanism in a bone-like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo. , 2001, Biomaterials.

[133]  N. Kröger,et al.  Species-specific polyamines from diatoms control silica morphology. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[134]  W. Stetler-Stevenson,et al.  Fungal fimbriae are composed of collagen. , 1996, The EMBO journal.

[135]  W. Goldberg Comparative study of the chemistry and structure of gorgonian and antipatharian coral skeletons , 1976 .

[136]  S. Baldauf,et al.  Molecular phylogeny of choanoflagellates, the sister group to Metazoa , 2008, Proceedings of the National Academy of Sciences.

[137]  J. Sugiyama,et al.  High-resolution electron microscopy on cellulose II and α-chitin single crystals , 1998 .

[138]  C. Hamm,et al.  The evolution of advanced mechanical defenses and potential technological applications of diatom shells. , 2005, Journal of nanoscience and nanotechnology.

[139]  E. Brunner,et al.  Biomolecular Self-assembly and its Relevance in Silica Biomineralization , 2007, Cell Biochemistry and Biophysics.

[140]  F. Marin,et al.  Unusually Acidic Proteins in Biomineralization , 2008 .

[141]  M. Grynpas,et al.  Transient precursor strategy or very small biological apatite crystals? , 2007, Bone.

[142]  S. Wainwright Skeletal organization in the coral, Pocillopora damicornis , 1963 .

[143]  Yugyung Lee,et al.  Biomedical applications of collagen. , 2001, International journal of pharmaceutics.

[144]  S. Mann,et al.  Structural aspects of biogenic silica. , 1986, Ciba Foundation symposium.

[145]  H. Ehrlich,et al.  First evidence of the presence of chitin in skeletons of marine sponges. Part II. Glass sponges (Hexactinellida: Porifera). , 2007, Journal of experimental zoology. Part B, Molecular and developmental evolution.

[146]  M. Glimcher,et al.  Comparative studies of the organic matrices of invertebrate mineralized tissues. , 1967, Journal of ultrastructure research.

[147]  A. Domard,et al.  Single crystals of α-chitin , 1992 .

[148]  E. Atkins,et al.  Electron diffraction and electron microscopy of crystalline α-chitin from the grasping spines of the marine worm Sagitta , 1979 .

[149]  A. Wan,et al.  Preparation of a chitin-apatite composite by in situ precipitation onto porous chitin scaffolds. , 1998, Journal of biomedical materials research.

[150]  P. Walther,et al.  Granular Chitin in the Epidermis of Nudibranch Molluscs , 2007, The Biological Bulletin.

[151]  Steve Weiner,et al.  THE MATERIAL BONE: Structure-Mechanical Function Relations , 1998 .

[152]  P. Liu,et al.  Yeast cells with an artificial mineral shell: protection and modification of living cells by biomimetic mineralization. , 2008, Angewandte Chemie.

[153]  T. Aigner,et al.  Collagens--structure, function, and biosynthesis. , 2003, Advanced drug delivery reviews.

[154]  D. M. Nelson,et al.  EFFECTS OF MEDIA WITH LOW SILICIC ACID CONCENTRATIONS ON TOOTH FORMATION IN ACARTIA TONSA DANA (COPEPODA, CALANOIDA) , 1980 .

[155]  James J. De Yoreo,et al.  Principles of crystal nucleation and growth , 2003 .

[156]  Xavier Turon,et al.  Siliceous spicules and skeleton frameworks in sponges: Origin, diversity, ultrastructural patterns, and biological functions , 2003, Microscopy research and technique.

[157]  K. M. Rudall Chitin and its association with other molecules , 2007 .

[158]  F. Nielsen,et al.  High dietary aluminum affects the response of rats to silicon deprivation , 1994, Biological Trace Element Research.

[159]  S. Lorenz,et al.  Self-Assembly of Highly Phosphorylated Silaffins and Their Function in Biosilica Morphogenesis , 2002, Science.

[160]  Hai-Yan Zhou Proteomic Analysis of Hydroxyapatite Interaction Proteins in Bone , 2007, Annals of the New York Academy of Sciences.

[161]  M. Gazzano,et al.  Oriented Crystallization of Vaterite in Collagenous Matrices , 1998 .

[162]  V. Martin‐Jézéquel,et al.  Contribution of multi-nuclear solid state NMR to the characterization of the Thalassiosira pseudonana diatom cell wall , 2008, Analytical and bioanalytical chemistry.

[163]  C. Jeuniaux,et al.  Chitinoproteic Complexes and Mineralization in Mollusk Skeletal Structures , 1986 .

[164]  H. Ehrlich,et al.  Biomimetically inspired hybrid materials based on silicified collagen , 2007 .

[165]  Hermann Ehrlich,et al.  Chitin-based organic networks: an integral part of cell wall biosilica in the diatom Thalassiosira pseudonana. , 2009, Angewandte Chemie.

[166]  Peter X Ma,et al.  Nano-fibrous scaffolding promotes osteoblast differentiation and biomineralization. , 2007, Biomaterials.

[167]  B. Frazer,et al.  The Organic-Mineral Interface in Biominerals , 2005 .

[168]  M. Burghammer,et al.  Spiral twisting of fiber orientation inside bone lamellae , 2006, Biointerphases.

[169]  L. Picken,et al.  A new crystallographic modification of chitin and its distribution , 1950, Experientia.

[170]  S. Weiner Organization of Organic Matrix Components in Mineralized Tissues , 1984 .

[171]  Hermann Ehrlich,et al.  Principles of demineralization: modern strategies for the isolation of organic frameworks. Part II. Decalcification. , 2009, Micron.

[172]  J. Prosser,et al.  Right and left handed helicity of chitin microfibrils in stipe cells inCoprinus cinereus , 1991, Protoplasma.

[173]  A. Cavalier,et al.  Hierarchical architectures by synergy between dynamical template self-assembly and biomineralization. , 2007, Nature materials.

[174]  A. George,et al.  Dentin Matrix Protein 1 Immobilized on Type I Collagen Fibrils Facilitates Apatite Deposition in Vitro* , 2004, Journal of Biological Chemistry.

[175]  S. Gellman,et al.  SPECTROMICROSCOPY AT THE ORGANIC-INORGANIC INTERFACE IN BIOMINERALS , 2005 .

[176]  Yoshiki Kohmura,et al.  Nanoscale imaging of mineral crystals inside biological composite materials using X-ray diffraction microscopy. , 2008, Physical review letters.

[177]  R. Hoffmann,et al.  Carboxymethylation of the fibrillar collagen with respect to formation of hydroxyapatite. , 2009, Journal of biomedical materials research. Part B, Applied biomaterials.

[178]  Xiang‐Yang Liu,et al.  Templating and supersaturation-driven anti-templating: principles of biomineral architecture. , 2003, Journal of the American Chemical Society.

[179]  S. Mann,et al.  Template Mineralization of Ordered Macroporous Chitin−Silica Composites Using a Cuttlebone-Derived Organic Matrix , 2000 .

[180]  W. Landis,et al.  Collagen as a scaffold for biomimetic mineralization of vertebrate tissues , 2006 .

[181]  K Schwarz,et al.  A bound form of silicon in glycosaminoglycans and polyuronides. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[182]  G. Falini,et al.  Crystallization of calcium carbonate salts into beta-chitin scaffold. , 2002, Journal of inorganic biochemistry.

[183]  S. Mann Biomineralization and biomimetic materials chemistry , 1995 .

[184]  D E Ingber,et al.  The origin of cellular life. , 2000, BioEssays : news and reviews in molecular, cellular and developmental biology.

[185]  S. Weiner,et al.  Structure of the nacreous organic matrix of a bivalve mollusk shell examined in the hydrated state using cryo-TEM. , 2001, Journal of structural biology.

[186]  Seung Woo Lee,et al.  The correlation between organic matrices and biominerals (myostracal prism and folia) of the adult oyster shell, Crassostrea gigas. , 2007, Micron.

[187]  S. Mann,et al.  Electron diffraction studies of the calcareous skeletons of bryozoans. , 2002, Journal of inorganic biochemistry.

[188]  D. Yoshikami,et al.  Combinatorial peptide libraries in drug design: lessons from venomous cone snails. , 1995, Trends in biotechnology.

[189]  S B Murray,et al.  The role of pH, temperature and nucleation in the formation of cholesteric liquid crystal spherulites from chitin and chitosan. , 1998, International journal of biological macromolecules.

[190]  G. Falini,et al.  Oriented crystallization of octacalcium phosphate into beta-chitin scaffold. , 2001, Journal of inorganic biochemistry.

[191]  O. Anderson Cytoplasmic origin and surface deposition of siliceous structures in Sarcodina , 1994, Protoplasma.

[192]  S. Weiner,et al.  Organic Matrix in Calcified Exoskeletons , 1983 .

[193]  F. Nagata,et al.  Bone-Like Apatite Formation On Collagen Fibrils By Biomimetic Method , 2002 .

[194]  W. Kenchington,et al.  THE CHITIN SYSTEM , 1973 .

[195]  Yasuaki Seki,et al.  Biological materials: Structure and mechanical properties , 2008 .

[196]  M. Giraud‐Guille Twisted plywood architecture of collagen fibrils in human compact bone osteons , 1988, Calcified Tissue International.

[197]  D. Howard,et al.  Natural marine sponge fiber skeleton: a biomimetic scaffold for human osteoprogenitor cell attachment, growth, and differentiation. , 2003, Tissue engineering.

[198]  F. Wilt Developmental biology meets materials science: Morphogenesis of biomineralized structures. , 2005, Developmental biology.

[199]  Yan Li,et al.  Self-assembly of mineralized collagen composites , 2007 .

[200]  S. Weiner,et al.  Biomineralization of limpet teeth: a cryo-TEM study of the organic matrix and the onset of mineral deposition. , 2007, Journal of structural biology.