A Hybrid Nano/CMOS Dynamically Reconfigurable System

Rapid progress is being made in the area of nanoelectronic circuit design. However, nanofabrication techniques are not mature yet. Thus, large-scale fabrication of such circuits is not feasible. To ease fabrication and overcome the expected high defect levels in nanotechnology, hybrid nono/CMOS reconfigurable architecture are attractive, especially if they can be fabricated using photolithography. This chapter describes one such architecture called NATURE. Unlike traditional reconfigurable architectures that can only support partial or coarse-grain dynamic reconfiguration, NATURE can support cycle-level dynamic reconfiguration. This allows the amount of functionality mapped in the same chip area to increase by more than an order of magnitude. The chapter also discusses how arbitrary logic circuits can be efficiently mapped to NATURE.

[1]  G. Stix Nanotubes in the clean room. , 2005, Scientific American.

[2]  Pierre G. Paulin,et al.  Force-directed scheduling for the behavioral synthesis of ASICs , 1989, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[3]  Wei Zhang,et al.  ALLCN: an automatic logic-to-layout tool for carbon nanotube based nanotechnology , 2005, 2005 International Conference on Computer Design.

[4]  Seth Copen Goldstein,et al.  NanoFabrics: spatial computing using molecular electronics , 2001, ISCA 2001.

[5]  H. Meng,et al.  Spin torque transfer structure with new spin switching configurations , 2007 .

[6]  R. Kiehl,et al.  Resonant tunneling transistor with quantum well base and high‐energy injection: A new negative differential resistance device , 1985 .

[7]  P. Chow,et al.  The design of an SRAM-based field-programmable gate array. I. Architecture , 1999, IEEE Trans. Very Large Scale Integr. Syst..

[8]  Wei Zhang,et al.  NATURE: a hybrid nanotube/CMOS dynamically reconfigurable architecture , 2006, 2006 43rd ACM/IEEE Design Automation Conference.

[9]  Vaughn Betz,et al.  Using cluster-based logic blocks and timing-driven packing to improve FPGA speed and density , 1999, FPGA '99.

[10]  Srivaths Ravi,et al.  Satisfiability-based test generation for nonseparable RTL controller-datapath circuits , 2006, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[11]  Vaughn Betz,et al.  FPGA routing architecture: segmentation and buffering to optimize speed and density , 1999, FPGA '99.

[12]  Li Shang,et al.  Dynamic power consumption in Virtex™-II FPGA family , 2002, FPGA '02.

[13]  Vaughn Betz,et al.  How Much Logic Should Go in an FPGA Logic Block? , 1998, IEEE Des. Test Comput..

[14]  Raphael Rubin,et al.  Design of FPGA interconnect for multilevel metallization , 2004, IEEE Trans. Very Large Scale Integr. Syst..

[15]  R.F. Smith,et al.  Carbon Nanotube Based Memory Development and Testing , 2007, 2007 IEEE Aerospace Conference.

[16]  Kinam Kim,et al.  Recent Advances in High Density Phase Change Memory (PRAM) , 2007, 2007 International Symposium on VLSI Technology, Systems and Applications (VLSI-TSA).

[17]  S. Lai,et al.  Current status of the phase change memory and its future , 2003, IEEE International Electron Devices Meeting 2003.

[18]  Raphael Rubin,et al.  3D Nanowire-Based Programmable Logic , 2006, 2006 1st International Conference on Nano-Networks and Workshops.

[19]  Hye-Jin Kim,et al.  A 90nm 1.8V 512Mb Diode-Switch PRAM with 266MB/s Read Throughput , 2007, 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[20]  Scott Hauck,et al.  The Chimaera reconfigurable functional unit , 2004 .

[21]  Michael J. Wilson,et al.  Nanowire-based sublithographic programmable logic arrays , 2004, FPGA '04.

[22]  Charles M. Lieber,et al.  High Performance Silicon Nanowire Field Effect Transistors , 2003 .

[23]  Wei Zhang,et al.  NanoMap: An Integrated Design Optimization Flow for a Hybrid Nanotube/CMOS Dynamically Reconfigurable Architecture , 2007, 2007 44th ACM/IEEE Design Automation Conference.

[24]  Shuichi Tahara,et al.  MRAM Applications Using Unlimited Write Endurance , 2007, IEICE Trans. Electron..

[25]  Seth Copen Goldstein,et al.  PipeRench: A Reconfigurable Architecture and Compiler , 2000, Computer.

[26]  A. El Gamal,et al.  Architecture of field-programmable gate arrays , 1993, Proc. IEEE.

[27]  Wei Zhang,et al.  A hybrid nano/CMOS dynamically reconfigurable system—Part I: Architecture , 2009, JETC.

[28]  B. Gleixner,et al.  Evolution of phase change memory characteristics with operating cycles: Electrical characterization and physical modeling , 2007 .

[29]  Wei Zhang,et al.  Design space exploration and data memory architecture design for a hybrid nano/CMOS dynamically reconfigurable architecture , 2009, JETC.

[30]  Jon M. Slaughter,et al.  Magnetoresistive random access memory using magnetic tunnel junctions , 2003, Proc. IEEE.

[31]  Niraj K. Jha,et al.  Interconnect-aware low-power high-level synthesis , 2005, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[32]  Wei Zhang,et al.  A hybrid Nano/CMOS dynamically reconfigurable system—Part II: Design optimization flow , 2009, JETC.

[33]  Majid Sarrafzadeh,et al.  Routability-Driven Packing: Metrics And Algorithms For Cluster-Based FPGAs , 2004, J. Circuits Syst. Comput..

[34]  Charles M. Lieber,et al.  Carbon nanotube-based nonvolatile random access memory for molecular computing , 2000, Science.

[35]  Michael Butts,et al.  Molecular electronics: devices, systems and tools for gigagate, gigabit chips , 2002, IEEE/ACM International Conference on Computer Aided Design, 2002. ICCAD 2002..

[36]  Jing Guo,et al.  Carbon Nanotube Field-Effect Transistors with Integrated Ohmic Contacts and High-κ Gate Dielectrics , 2004 .

[37]  Jason Cong,et al.  Combinational logic synthesis for LUT based field programmable gate arrays , 1996, TODE.

[38]  Mei Liu,et al.  Three-dimensional CMOL: three-dimensional integration of CMOS/nanomaterial hybrid digital circuits , 2007 .

[39]  Steven Trimberger,et al.  A time-multiplexed FPGA , 1997, Proceedings. The 5th Annual IEEE Symposium on Field-Programmable Custom Computing Machines Cat. No.97TB100186).

[40]  Vaughn Betz,et al.  VPR: A new packing, placement and routing tool for FPGA research , 1997, FPL.

[41]  D. Strukov,et al.  CMOL FPGA: a reconfigurable architecture for hybrid digital circuits with two-terminal nanodevices , 2005 .

[42]  André DeHon,et al.  Dynamically Programmable Gate Arrays: A Step Toward Increased Computational Density , 1996 .

[43]  Vaughn Betz,et al.  Timing-driven placement for FPGAs , 2000, FPGA '00.

[44]  Bruce F. Cockburn,et al.  An electrical simulation model for the chalcogenide phase-change memory cell , 2003, Records of the 2003 International Workshop on Memory Technology, Design and Testing.

[45]  Rudy Lauwereins,et al.  ADRES: An Architecture with Tightly Coupled VLIW Processor and Coarse-Grained Reconfigurable Matrix , 2003, FPL.

[46]  James Kao,et al.  Subthreshold leakage modeling and reduction techniques , 2002, ICCAD 2002.

[47]  R. Stanley Williams,et al.  CMOS-like logic in defective, nanoscale crossbars , 2004 .

[48]  Jason Cong,et al.  FlowMap: an optimal technology mapping algorithm for delay optimization in lookup-table based FPGA designs , 1994, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[49]  Hyungsoon Shin,et al.  Macro model and sense amplifier for a MRAM , 2002 .

[50]  Anish Muttreja,et al.  Variability-Tolerant Register-Transfer Level Synthesis , 2008, 21st International Conference on VLSI Design (VLSID 2008).

[51]  Niraj K. Jha,et al.  Hierarchical test generation and design for testability methods for ASPPs and ASIPs , 1999, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[52]  Tetsuhiro Suzuki,et al.  Toggle magnetic random access memory cells scalable to a capacity of over 100 megabits , 2008 .

[53]  P. J. Burke An RF circuit model for carbon nanotubes , 2003 .