On Regularity of the Logarithmic Forward Map of Electrical Impedance Tomography

This work considers properties of the logarithm of the Neumann-to-Dirichlet boundary map for the conductivity equation in a Lipschitz domain. It is shown that the mapping from the (logarithm of) the conductivity, i.e. the (logarithm of) the coefficient in the divergence term of the studied elliptic partial differential equation, to the logarithm of the Neumann-to-Dirichlet map is continuously Fr\'echet differentiable between natural topologies. Moreover, for any essentially bounded perturbation of the conductivity, the Fr\'echet derivative defines a bounded linear operator on the space of square integrable functions living on the domain boundary, although the logarithm of the Neumann-to-Dirichlet map itself is unbounded in that topology. In particular, it follows from the fundamental theorem of calculus that the difference between the logarithms of any two Neumann-to-Dirichlet maps is always bounded on the space of square integrable functions. All aforementioned results also hold if the Neumann-to-Dirichlet boundary map is replaced by its inverse, i.e. the Dirichlet-to-Neumann map.

[1]  Yaakov Friedman,et al.  Operator differentiable functions , 1990 .

[2]  David Isaacson,et al.  NOSER: An algorithm for solving the inverse conductivity problem , 1990, Int. J. Imaging Syst. Technol..

[3]  Jin Keun Seo,et al.  The inverse conductivity problem with one measurement: stability and estimation of size , 1997 .

[4]  A. Calderón,et al.  On an inverse boundary value problem , 2006 .

[5]  Einar Hille Une généralisation du problème de Cauchy , 1952 .

[6]  Masaru Ikehata,et al.  Size estimation of inclusion , 1998 .

[7]  William R B Lionheart,et al.  GREIT: a unified approach to 2D linear EIT reconstruction of lung images , 2009, Physiological measurement.

[8]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[9]  Liliana Borcea,et al.  Electrical impedance tomography , 2002 .

[10]  Frank Hansen Some operator monotone functions , 2008, 0803.2364.

[11]  E. Somersalo,et al.  Existence and uniqueness for electrode models for electric current computed tomography , 1992 .

[12]  David S. Gilliam,et al.  The Fréchet Derivative of an Analytic Function of a Bounded Operator with Some Applications , 2009, Int. J. Math. Math. Sci..

[13]  Gunther Uhlmann,et al.  Electrical impedance tomography and Calderón's problem , 2009 .

[14]  David Isaacson,et al.  Electrical Impedance Tomography , 1999, SIAM Rev..

[15]  John M. Lee,et al.  Determining anisotropic real-analytic conductivities by boundary measurements , 1989 .

[16]  Jin Keun Seo,et al.  Exact Shape-Reconstruction by One-Step Linearization in Electrical Impedance Tomography , 2010, SIAM J. Math. Anal..

[17]  D. Isaacson,et al.  Electrode models for electric current computed tomography , 1989, IEEE Transactions on Biomedical Engineering.

[18]  Nuutti Hyvönen,et al.  Generalized linearization techniques in electrical impedance tomography , 2017, Numerische Mathematik.

[19]  R. G. Cooke Functional Analysis and Semi-Groups , 1949, Nature.

[20]  Liliana Borcea,et al.  Addendum to 'Electrical impedance tomography' , 2003 .

[21]  Erhard Heinz,et al.  Beiträge zur Störungstheorie der Spektralzerleung , 1951 .

[22]  Henrik Garde,et al.  Convergence and regularization for monotonicity-based shape reconstruction in electrical impedance tomography , 2015, Numerische Mathematik.