Blood oxygen‐level dependent functional assessment of cerebrovascular reactivity: Feasibility for intraoperative 3 Tesla MRI

To assess the feasibility of functional blood oxygen‐level dependent (BOLD) MRI to evaluate intraoperative cerebrovascular reactivity (CVR) at 3 Tesla field strength.

[1]  David J Mikulis,et al.  Preoperative and postoperative mapping of cerebrovascular reactivity in moyamoya disease by using blood oxygen level-dependent magnetic resonance imaging. , 2005, Journal of neurosurgery.

[2]  G. Glover,et al.  Functional magnetic resonance imaging of regional cerebral blood oxygenation changes during breath holding. , 1998, Stroke.

[3]  Y. Hsu,et al.  Detectability of blood oxygenation level-dependent signal changes during short breath hold duration. , 2002, Magnetic resonance imaging.

[4]  A. Truong,et al.  Neurological Complications of Anesthesia , 2008 .

[5]  D J Mikulis,et al.  Quantitative Measurement of Cerebrovascular Reactivity by Blood Oxygen Level-Dependent MR Imaging in Patients with Intracranial Stenosis: Preoperative Cerebrovascular Reactivity Predicts the Effect of Extracranial-Intracranial Bypass Surgery , 2011, American Journal of Neuroradiology.

[6]  Y. Hsu,et al.  Blood oxygenation level‐dependent MRI of cerebral gliomas during breath holding , 2004, Journal of magnetic resonance imaging : JMRI.

[7]  D J Mikulis,et al.  Cerebrovascular Reactivity Mapping: An Evolving Standard for Clinical Functional Imaging , 2015, American Journal of Neuroradiology.

[8]  E. Swenson,et al.  Resuscitation from severe acute hypercapnia. Determinants of tolerance and survival. , 1992, Chest.

[9]  Zachary B. Rodgers,et al.  Cerebrovascular reactivity measured with arterial spin labeling and blood oxygen level dependent techniques. , 2015, Magnetic resonance imaging.

[10]  Kevin Murphy,et al.  Reliable quantification of BOLD fMRI cerebrovascular reactivity despite poor breath-hold performance☆ , 2013, NeuroImage.

[11]  Ryuta Ito,et al.  Estimation of Cerebral Perfusion Reserve by Blood Oxygenation Level—Dependent Imaging: Comparison with Single-Photon Emission Computed Tomography , 2003, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[12]  D. Mikulis,et al.  Neurovascular Uncoupling in Functional MR Imaging , 2011 .

[13]  S. Ogawa,et al.  The sensitivity of magnetic resonance image signals of a rat brain to changes in the cerebral venous blood oxygenation , 1993, Magnetic resonance in medicine.

[14]  David J Mikulis,et al.  Mapping Cerebrovascular Reactivity Using Blood Oxygen Level-Dependent MRI in Patients With Arterial Steno-occlusive Disease: Comparison With Arterial Spin Labeling MRI , 2008, Stroke.

[15]  Jay J Pillai,et al.  Clinical utility of cerebrovascular reactivity mapping in patients with low grade gliomas. , 2011, World journal of clinical oncology.

[16]  J. Mehta,et al.  Cerebrovascular Reactivity to Carbon Dioxide Under Anesthesia: A Qualitative Systematic Review , 2015, Journal of neurosurgical anesthesiology.

[17]  A. Beltramello,et al.  The Role of 3T Magnetic Resonance Imaging for Targeting the Human Subthalamic Nucleus in Deep Brain Stimulation for Parkinson Disease , 2015, Journal of Neurological Surgery—Part A.

[18]  D J Mikulis,et al.  Measuring cerebrovascular reactivity: what stimulus to use? , 2013, The Journal of physiology.

[19]  H. Wong,et al.  Heterogeneous Cerebral Vasoreactivity Dynamics in Patients with Carotid Stenosis , 2013, PloS one.

[20]  M. Souweidane,et al.  Intraoperative magnetic resonance imaging. , 2009, Journal of neurosurgery. Pediatrics.

[21]  J. Madsen,et al.  3 Tesla intraoperative MRI for brain tumor surgery , 2014, Journal of magnetic resonance imaging : JMRI.

[22]  James T Voyvodic,et al.  Cerebrovascular reactivity mapping in patients with low grade gliomas undergoing presurgical sensorimotor mapping with BOLD fMRI , 2014, Journal of magnetic resonance imaging : JMRI.

[23]  Andrea Sbarbati,et al.  Reproducibility of BOLD signal change induced by breath holding , 2009, NeuroImage.

[24]  C. K. Mahutte,et al.  Arterial blood gas changes during breath-holding from functional residual capacity. , 1996, Chest.

[25]  P. Mansfield Multi-planar image formation using NMR spin echoes , 1977 .

[26]  Sylvie Grand,et al.  Reduced CMRO2 and cerebrovascular reserve in patients with severe intracranial arterial stenosis: A combined multiparametric qBOLD oxygenation and BOLD fMRI study , 2015, Human brain mapping.

[27]  Dafna Ben Bashat,et al.  Hemodynamic Response Imaging: A Potential Tool for the Assessment of Angiogenesis in Brain Tumors , 2012, PloS one.

[28]  Michael J Lang,et al.  A Moveable 3-Tesla Intraoperative Magnetic Resonance Imaging System , 2011, Neurosurgery.

[29]  James Duffin,et al.  End-inspiratory rebreathing reduces the end-tidal to arterial PCO2 gradient in mechanically ventilated pigs , 2011, Intensive Care Medicine.

[30]  A. Crawley,et al.  Surgical Revascularization Reverses Cerebral Cortical Thinning in Patients With Severe Cerebrovascular Steno-Occlusive Disease , 2011, Stroke.

[31]  Ying Mao,et al.  Awake language mapping and 3-Tesla intraoperative MRI-guided volumetric resection for gliomas in language areas , 2013, Journal of Clinical Neuroscience.