Computational identification of gene over-expression targets for metabolic engineering of taxadiene production

[1]  P. K. Ajikumar,et al.  Analysis of heterologous taxadiene production in K- and B-derived Escherichia coli , 2012, Applied Microbiology and Biotechnology.

[2]  B. Pfeifer,et al.  Simultaneous production and partitioning of heterologous polyketide and isoprenoid natural products in an Escherichia coli two-phase bioprocess , 2011, Journal of Industrial Microbiology & Biotechnology.

[3]  Keith E. J. Tyo,et al.  Isoprenoid Pathway Optimization for Taxol Precursor Overproduction in Escherichia coli , 2010, Science.

[4]  Kelly M. Thayer,et al.  Combining metabolic and protein engineering of a terpenoid biosynthetic pathway for overproduction and selectivity control , 2010, Proceedings of the National Academy of Sciences.

[5]  Michael Wink,et al.  Biochemistry of plant secondary metabolism. , 2010 .

[6]  M. Wink Functions and biotechnology of plant secondary metabolites , 2010 .

[7]  Sang Yup Lee,et al.  In Silico Identification of Gene Amplification Targets for Improvement of Lycopene Production , 2010, Applied and Environmental Microbiology.

[8]  B. Pfeifer,et al.  Metabolic flux analysis and pharmaceutical production. , 2010, Metabolic engineering.

[9]  H. Jomaa,et al.  The Nonmevalonate Pathway of Isoprenoid Biosynthesis in Mycobacterium tuberculosis Is Essential and Transcriptionally Regulated by Dxs , 2010, Journal of bacteriology.

[10]  Kyongbum Lee,et al.  Computational analysis of phenotypic space in heterologous polyketide biosynthesis--applications to Escherichia coli, Bacillus subtilis, and Saccharomyces cerevisiae. , 2010, Journal of theoretical biology.

[11]  Jong Myoung Park,et al.  Constraints-based genome-scale metabolic simulation for systems metabolic engineering. , 2009, Biotechnology advances.

[12]  Dana J Morrone,et al.  Increasing diterpene yield with a modular metabolic engineering system in E. coli: comparison of MEV and MEP isoprenoid precursor pathway engineering , 2009, Applied Microbiology and Biotechnology.

[13]  J. Keasling,et al.  Biosynthesis of plant isoprenoids: perspectives for microbial engineering. , 2009, Annual review of plant biology.

[14]  Effendi Leonard,et al.  Opportunities in metabolic engineering to facilitate scalable alkaloid production. , 2009, Nature chemical biology.

[15]  I. Karimi,et al.  Characterizing Escherichia coli DH5α growth and metabolism in a complex medium using genome‐scale flux analysis , 2009, Biotechnology and bioengineering.

[16]  Y. Chao,et al.  Replicon‐free and markerless methods for genomic insertion of DNAs in phage attachment sites and controlled expression of chromosomal genes in Escherichia coli , 2008, Biotechnology and bioengineering.

[17]  Blaine A. Pfeifer,et al.  Current status, strategies, and potential for the metabolic engineering of heterologous polyketides in Escherichia coli , 2008, Biotechnology Letters.

[18]  Keith E. J. Tyo,et al.  Terpenoids: opportunities for biosynthesis of natural product drugs using engineered microorganisms. , 2008, Molecular pharmaceutics.

[19]  S. Lee,et al.  Metabolic flux analysis and metabolic engineering of microorganisms. , 2008, Molecular bioSystems.

[20]  B. Palsson,et al.  Genome-scale Reconstruction of Metabolic Network in Bacillus subtilis Based on High-throughput Phenotyping and Gene Essentiality Data* , 2007, Journal of Biological Chemistry.

[21]  Adam M. Feist,et al.  A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information , 2007, Molecular systems biology.

[22]  Ronan M. T. Fleming,et al.  Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0 , 2007, Nature Protocols.

[23]  F. Ausubel,et al.  Prospects for plant-derived antibacterials , 2006, Nature Biotechnology.

[24]  Michael Hucka,et al.  SBMLToolbox: an SBML toolbox for MATLAB users , 2006, Bioinform..

[25]  Timothy S. Ham,et al.  Production of the antimalarial drug precursor artemisinic acid in engineered yeast , 2006, Nature.

[26]  Mats Jirstrand,et al.  Systems biology Systems Biology Toolbox for MATLAB : a computational platform for research in systems biology , 2006 .

[27]  H. Mori,et al.  Complete set of ORF clones of Escherichia coli ASKA library (a complete set of E. coli K-12 ORF archive): unique resources for biological research. , 2006, DNA research : an international journal for rapid publication of reports on genes and genomes.

[28]  C. Poulter,et al.  Mechanistic studies with 2-C-methyl-D-erythritol 4-phosphate synthase from Escherichia coli. , 2005, Biochemistry.

[29]  G. Stephanopoulos,et al.  Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli. , 2005, Metabolic engineering.

[30]  Gregory Stephanopoulos,et al.  Construction of lycopene-overproducing E. coli strains by combining systematic and combinatorial gene knockout targets , 2005, Nature Biotechnology.

[31]  C. Poulter,et al.  Synthesis and evaluation of 1-deoxy-D-xylulose 5-phosphoric acid analogues as alternate substrates for methylerythritol phosphate synthase. , 2005, The Journal of organic chemistry.

[32]  S. Gerdes,et al.  A Genetic Screen for the Identification of Thiamin Metabolic Genes* , 2004, Journal of Biological Chemistry.

[33]  C. Poulter,et al.  Rhodobacter capsulatus 1-deoxy-D-xylulose 5-phosphate synthase: steady-state kinetics and substrate binding. , 2003, Biochemistry.

[34]  G. Church,et al.  Analysis of optimality in natural and perturbed metabolic networks , 2002 .

[35]  B. Palsson,et al.  Metabolic modelling of microbes: the flux-balance approach. , 2002, Environmental microbiology.

[36]  B. Blagg,et al.  E. coli MEP synthase: steady-state kinetic analysis and substrate binding. , 2002, Biochemistry.

[37]  B. Palsson,et al.  In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data , 2001, Nature Biotechnology.

[38]  B. Palsson,et al.  The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics, and capabilities. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[39]  P. Matthews,et al.  Metabolic engineering of carotenoid accumulation in Escherichia coli by modulation of the isoprenoid precursor pool with expression of deoxyxylulose phosphate synthase , 2000, Applied Microbiology and Biotechnology.

[40]  A. Hurlburt,et al.  Escherichia coli Open Reading Frame 696 Is idi, a Nonessential Gene Encoding Isopentenyl Diphosphate Isomerase , 1999, Journal of bacteriology.

[41]  Sean V. Taylor,et al.  Thiamin biosynthesis in prokaryotes , 1999, Archives of Microbiology.

[42]  H. Kacser,et al.  The control of flux. , 1995, Biochemical Society transactions.

[43]  N. Lewis,et al.  Cyclization of Geranylgeranyl Diphosphate to Taxa-4 (5), 11 (12) -diene Is the Committed Step of Taxol Biosynthesis in Pacific Yew (*) , 1995, The Journal of Biological Chemistry.

[44]  M. Grever,et al.  The taxol supply crisis. New NCI policies for handling the large-scale production of novel natural product anticancer and anti-HIV agents. , 1993, Journal of natural products.

[45]  Haoran Zhang,et al.  Methods and options for the heterologous production of complex natural products. , 2011, Natural product reports.

[46]  M. Wink Annual Plant Reviews Volume 40 2nd Edition Biochemistry of Plant Secondary Metabolism , 2010 .

[47]  Ronan M. T. Fleming,et al.  Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0 , 2007, Nature Protocols.

[48]  C. Maranas,et al.  An optimization framework for identifying reaction activation/inhibition or elimination candidates for overproduction in microbial systems. , 2006, Metabolic engineering.

[49]  G. Bennett,et al.  Effect of Overexpression of a Soluble Pyridine Nucleotide Transhydrogenase (UdhA) on the Production of Poly(3‐hydroxybutyrate) in Escherichia coli , 2006, Biotechnology progress.

[50]  R. Larossa,et al.  Chromosomal promoter replacement of the isoprenoid pathway for enhancing carotenoid production in E. coli. , 2006, Metabolic engineering.