Computable Error Estimates for Ground State Solution of Bose-Einstein Condensates
暂无分享,去创建一个
[1] Paulsamy Muruganandam,et al. Bose-Einstein condensation dynamics from the numerical solution of the Gross-Pitaevskii equation , 2002 .
[2] B. I. Schnieder,et al. Numerical approach to the ground and excited states of a Bose-Einstein condensed gas confined in a completely anisotropic trap , 1999 .
[3] Daniel Peterseim,et al. Two-Level Discretization Techniques for Ground State Computations of Bose-Einstein Condensates , 2013, SIAM J. Numer. Anal..
[4] E. M. Lifshitz,et al. Quantum mechanics: Non-relativistic theory, , 1959 .
[5] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis , 2000 .
[6] Hehu Xie,et al. A multi-level correction scheme for eigenvalue problems , 2011, Math. Comput..
[7] Lin Qun,et al. Stokes Eigenvalue Approximations from Below with Nonconforming Mixed Finite Element Methods , 2010 .
[8] Elliott H. Lieb,et al. Bosons in a trap: A rigorous derivation of the Gross-Pitaevskii energy functional , 1999, math-ph/9908027.
[9] Jinchao Xu,et al. Iterative Methods by Space Decomposition and Subspace Correction , 1992, SIAM Rev..
[10] Zachary Dutton,et al. Near-Resonant Spatial Images of Confined Bose-Einstein Condensates in a 4-Dee Magnetic Bottle , 1998, cond-mat/9804278.
[11] W. Bao,et al. Mathematical Models and Numerical Methods for Bose-Einstein Condensation , 2012, 1212.5341.
[12] Tomaÿs Vejchodsky,et al. COMPUTING UPPER BOUNDS ON FRIEDRICHS' CONSTANT , 2012 .
[13] Qiang Du,et al. Computing the Ground State Solution of Bose-Einstein Condensates by a Normalized Gradient Flow , 2003, SIAM J. Sci. Comput..
[14] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[15] J. Z. Zhu,et al. The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .
[16] Carsten Carstensen,et al. Guaranteed lower bounds for eigenvalues , 2014, Math. Comput..
[17] Succi,et al. Numerical solution of the gross-pitaevskii equation using an explicit finite-difference scheme: An application to trapped bose-einstein condensates , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[18] Hehu Xie,et al. A full multigrid method for eigenvalue problems , 2014, J. Comput. Phys..
[19] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[20] I. Babuska,et al. A‐posteriori error estimates for the finite element method , 1978 .
[21] Michel Fortin,et al. Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.
[22] C.-S. Chien,et al. A Two-Grid Discretization Scheme for Semilinear Elliptic Eigenvalue Problems , 2005, SIAM J. Sci. Comput..
[23] S. Repin. A Posteriori Estimates for Partial Differential Equations , 2008 .
[24] Xuefeng Liu. A framework of verified eigenvalue bounds for self-adjoint differential operators , 2015, Appl. Math. Comput..
[25] Tomás Vejchodský,et al. Two-Sided Bounds for Eigenvalues of Differential Operators with Applications to Friedrichs, Poincaré, Trace, and Similar Constants , 2013, SIAM J. Numer. Anal..
[26] Hehu Xie,et al. A posterior error estimator and lower bound of a nonconforming finite element method , 2014, J. Comput. Appl. Math..
[27] Eric Cornell,et al. Very Cold Indeed: The Nanokelvin Physics of Bose-Einstein Condensation , 1996, Journal of research of the National Institute of Standards and Technology.
[28] Pekka Neittaanmäki,et al. Reliable Methods for Computer Simulation: Error Control and a Posteriori Estimates , 2004 .
[29] E. Gross. Structure of a quantized vortex in boson systems , 1961 .
[30] Carsten Carstensen,et al. Guaranteed lower eigenvalue bounds for the biharmonic equation , 2014, Numerische Mathematik.
[31] Ivan Hlaváček,et al. Convergence of a finite element method based on the dual variational formulation , 1976 .
[32] Zhimin Zhang,et al. Eigenvalue approximation from below using non-conforming finite elements , 2010 .
[33] Xie He-hu. The Asymptotic Lower Bounds of Eigenvalue Problems by Nonconforming Finite Element Methods , 2012 .
[34] Hehu Xie,et al. Recent results on lower bounds of eigenvalue problems by nonconforming finite element methods , 2013 .
[35] Weizhu Bao,et al. Ground-state solution of Bose--Einstein condensate by directly minimizing the energy functional , 2003 .
[36] R. J. Dodd,et al. Approximate Solutions of the Nonlinear Schrödinger Equation for Ground and Excited States of Bose-Einstein Condensates , 1996, Journal of research of the National Institute of Standards and Technology.
[37] Rüdiger Verfürth,et al. A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .
[38] Edwards,et al. Numerical solution of the nonlinear Schrödinger equation for small samples of trapped neutral atoms. , 1995, Physical review. A, Atomic, molecular, and optical physics.
[39] Xuefeng Liu,et al. Verified Eigenvalue Evaluation for the Laplacian over Polygonal Domains of Arbitrary Shape , 2012, SIAM J. Numer. Anal..
[40] C.-S. Chien,et al. Two-grid discretization schemes for nonlinear Schrödinger equations , 2008 .
[41] C. Wieman,et al. Nobel Lecture: Bose-Einstein condensation in a dilute gas, the first 70 years and some recent experiments , 2002 .
[42] W. Ketterle. Nobel lecture: When atoms behave as waves: Bose-Einstein condensation and the atom laser* , 2002 .
[43] Succi,et al. Ground state of trapped interacting bose-einstein condensates by an explicit imaginary-time algorithm , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[44] Hehu Xie,et al. A type of multilevel method for the Steklov eigenvalue problem , 2014 .
[45] C. Wieman,et al. Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor , 1995, Science.
[46] W. Bao,et al. MATHEMATICAL THEORY AND NUMERICAL METHODS FOR , 2012 .
[47] Wolfgang Ketterle,et al. Bose–Einstein condensation of atomic gases , 2002, Nature.
[48] Tomás Vejchodský,et al. Complementarity based a posteriori error estimates and their properties , 2012, Math. Comput. Simul..
[49] J. Pasciak,et al. New convergence estimates for multigrid algorithms , 1987 .
[50] Jun Hu,et al. The Lower Bounds for Eigenvalues of Elliptic Operators --By Nonconforming Finite Element Methods , 2011, 1112.1145.
[51] Yvon Maday,et al. Numerical Analysis of Nonlinear Eigenvalue Problems , 2009, J. Sci. Comput..
[52] F. Dalfovo,et al. Theory of Bose-Einstein condensation in trapped gases , 1998, cond-mat/9806038.
[53] Hehu Xie,et al. Computing the lower and upper bounds of Laplace eigenvalue problem: by combining conforming and nonconforming finite element methods , 2011, 1109.5977.
[54] Shi Jin,et al. Numerical Study of Time-Splitting Spectral Discretizations of Nonlinear Schrödinger Equations in the Semiclassical Regimes , 2003, SIAM J. Sci. Comput..
[55] Aihui Zhou. An analysis of finite-dimensional approximations for the ground state solution of Bose?Einstein condensates , 2004 .