The role of inflammation in epilepsy

Epilepsy is the third most common chronic brain disorder, and is characterized by an enduring predisposition to generate seizures. Despite progress in pharmacological and surgical treatments of epilepsy, relatively little is known about the processes leading to the generation of individual seizures, and about the mechanisms whereby a healthy brain is rendered epileptic. These gaps in our knowledge hamper the development of better preventive treatments and cures for the ≈30% of epilepsy cases that prove resistant to current therapies. Here, we focus on the rapidly growing body of evidence that supports the involvement of inflammatory mediators—released by brain cells and peripheral immune cells—in both the origin of individual seizures and the epileptogenic process. We first describe aspects of brain inflammation and immunity, before exploring the evidence from clinical and experimental studies for a relationship between inflammation and epilepsy. Subsequently, we discuss how seizures cause inflammation, and whether such inflammation, in turn, influences the occurrence and severity of seizures, and seizure-related neuronal death. Further insight into the complex role of inflammation in the generation and exacerbation of epilepsy should yield new molecular targets for the design of antiepileptic drugs, which might not only inhibit the symptoms of this disorder, but also prevent or abrogate disease pathogenesis.

[1]  James O. McNamara,et al.  Formation of Complement Membrane Attack Complex in Mammalian Cerebral Cortex Evokes Seizures and Neurodegeneration , 2003, The Journal of Neuroscience.

[2]  T. Baram,et al.  High-dose corticotropin (ACTH) versus prednisone for infantile spasms: a prospective, randomized, blinded study. , 1996, Pediatrics.

[3]  W. Banks,et al.  The blood–brain barrier and immune function and dysfunction , 2010, Neurobiology of Disease.

[4]  H. Cross,et al.  Corticosteroids including ACTH for childhood epilepsy other than epileptic spasms. , 2007, The Cochrane database of systematic reviews.

[5]  T. Bártfai,et al.  A novel non-transcriptional pathway mediates the proconvulsive effects of interleukin-1beta. , 2008, Brain : a journal of neurology.

[6]  T. Cullingford Peroxisome proliferator‐activated receptor alpha and the ketogenic diet , 2008, Epilepsia.

[7]  M Locati,et al.  Decoy receptors: a strategy to regulate inflammatory cytokines and chemokines. , 2001, Trends in immunology.

[8]  E. Benveniste,et al.  SOCS1 and SOCS3 in the control of CNS immunity. , 2009, Trends in immunology.

[9]  A. Nehlig,et al.  Temporal patterns of the cerebral inflammatory response in the rat lithium–pilocarpine model of temporal lobe epilepsy , 2004, Neurobiology of Disease.

[10]  F. Gardoni,et al.  Cytokines and neuronal ion channels in health and disease. , 2007, International review of neurobiology.

[11]  David A. Willoughby,et al.  Selective expression of clusterin (SGP-2) and complement C1qB and C4 during responses to neurotoxinsin vivo andin vitro , 1994, Neuroscience.

[12]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[13]  A. Vezzani,et al.  Age-dependent vascular changes induced by status epilepticus in rat forebrain: Implications for epileptogenesis , 2009, Neurobiology of Disease.

[14]  E. Aronica,et al.  Inflammatory processes in cortical tubers and subependymal giant cell tumors of tuberous sclerosis complex , 2008, Epilepsy Research.

[15]  T. Fujiwara,et al.  A substantial number of Rasmussen syndrome patients have increased IgG, CD4+ T cells, TNFα, and Granzyme B in CSF , 2009, Epilepsia.

[16]  G. Sperk,et al.  Powerful anticonvulsant action of IL-1 receptor antagonist on intracerebral injection and astrocytic overexpression in mice. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[17]  S. Henriksen,et al.  Profound increase in sensitivity to glutamatergic‐ but not cholinergic agonist‐induced seizures in transgenic mice with astrocyte production of IL‐6 , 2003, Journal of neuroscience research.

[18]  E. Aronica,et al.  Effects of SC58236, a selective COX-2 inhibitor, on epileptogenesis and spontaneous seizures in a rat model for temporal lobe epilepsy , 2009, Epilepsy Research.

[19]  Shlomo Shinnar,et al.  Infantile spasms: A U.S. consensus report , 2010, Epilepsia.

[20]  R. Dantzer Cytokine, sickness behavior, and depression. , 2006, Neurologic clinics.

[21]  E. Aronica,et al.  The IL-1β system in epilepsy-associated malformations of cortical development , 2006, Neurobiology of Disease.

[22]  C. Elger,et al.  Destruction of neurons by cytotoxic T cells: A new pathogenic mechanism in rasmussen's encephalitis , 2002, Annals of neurology.

[23]  J. Julien,et al.  Innate immunity: the missing link in neuroprotection and neurodegeneration? , 2002, Nature Reviews Neuroscience.

[24]  Moses Rodriguez,et al.  Seizures in Patients with Multiple Sclerosis , 2009, CNS drugs.

[25]  Marian Joëls,et al.  The neuro-symphony of stress , 2009, Nature Reviews Neuroscience.

[26]  A. Vezzani,et al.  Interleukin Converting Enzyme inhibition impairs kindling epileptogenesis in rats by blocking astrocytic IL-1β production , 2008, Neurobiology of Disease.

[27]  Q. Pittman,et al.  Causal Links between Brain Cytokines and Experimental Febrile Convulsions in the Rat , 2005, Epilepsia.

[28]  Alon Friedman,et al.  Blood–brain barrier breakdown as a therapeutic target in traumatic brain injury , 2010, Nature Reviews Neurology.

[29]  E. Wirrell,et al.  The Epileptic Encephalopathies of Infancy and Childhood , 2005, Canadian Journal of Neurological Sciences / Journal Canadien des Sciences Neurologiques.

[30]  A. Vezzani,et al.  Inactivation of Caspase‐1 in Rodent Brain: A Novel Anticonvulsive Strategy , 2006, Epilepsia.

[31]  Amy L. Brewster,et al.  Fever, febrile seizures and epilepsy , 2007, Trends in Neurosciences.

[32]  Boyoung Lee,et al.  CRE-mediated transcription and COX-2 expression in the pilocarpine model of status epilepticus , 2007, Neurobiology of Disease.

[33]  R. Riikonen Topical Review: Infantile Spasms: Therapy and Outcome , 2004 .

[34]  T. Bártfai,et al.  Ceramide mediates the rapid phase of febrile response to IL-1beta. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[35]  T. Gilmore Introduction to NF-κB: players, pathways, perspectives , 2006, Oncogene.

[36]  辻江正徳 TGF-β(transforming growth factor-β) , 2002 .

[37]  Adam R Ferguson,et al.  Cell Death after Spinal Cord Injury Is Exacerbated by Rapid TNFα-Induced Trafficking of GluR2-Lacking AMPARs to the Plasma Membrane , 2008, The Journal of Neuroscience.

[38]  E. Oby,et al.  The Blood–Brain Barrier and Epilepsy , 2006, Epilepsia.

[39]  G. Avanzini,et al.  The use of immunoglobulins in the treatment of human epilepsy , 2002, Neurological Sciences.

[40]  Quentin J. Pittman,et al.  Contributions of peripheral inflammation to seizure susceptibility: Cytokines and brain excitability , 2010, Epilepsy Research.

[41]  Xiaoyu Peng,et al.  Anti-NMDA-receptor encephalitis: case series and analysis of the effects of antibodies , 2008, The Lancet Neurology.

[42]  M. Satoh,et al.  Effects of kainic acid on messenger RNA levels of IL-1β, IL-6, TNFα and LIF in the rat brain , 1991 .

[43]  E. Aronica,et al.  Toll-like receptor 4 and high-mobility group box-1 are involved in ictogenesis and can be targeted to reduce seizures , 2010, Nature Medicine.

[44]  B. Beutler,et al.  Forward genetic analysis of TLR-signaling pathways: an evaluation. , 2008, Advanced drug delivery reviews.

[45]  R. Spreafico,et al.  Antibodies against GluR3 peptides are not specific for Rasmussen's encephalitis but are also present in epilepsy patients with severe, early onset disease and intractable seizures , 2002, Journal of Neuroimmunology.

[46]  Morris H. Scantlebury,et al.  Febrile seizures and temporal lobe epileptogenesis , 2010, Epilepsy Research.

[47]  C. Kaltschmidt,et al.  NF-kappa B: a crucial transcription factor for glial and neuronal cell function. , 1997, Trends in neurosciences.

[48]  P. Bramanti,et al.  The emerging role for chemokines in epilepsy , 2010, Journal of Neuroimmunology.

[49]  H. Lodish,et al.  Role of transforming growth factor beta in human disease. , 2000, The New England journal of medicine.

[50]  Takao Shimizu,et al.  Profiling of Eicosanoid Production in the Rat Hippocampus during Kainic Acid-induced Seizure , 2006, Journal of Biological Chemistry.

[51]  R. Malenka,et al.  Differential Regulation of AMPA Receptor and GABA Receptor Trafficking by Tumor Necrosis Factor-α , 2005, The Journal of Neuroscience.

[52]  S. Appel,et al.  T cell-microglial dialogue in Parkinson's disease and amyotrophic lateral sclerosis: are we listening? , 2010, Trends in immunology.

[53]  M. Hurme,et al.  Increased Plasma Levels of Pro‐ and Anti‐inflammatory Cytokines in Patients with Febrile Seizures , 2002, Epilepsia.

[54]  Asla Pitkänen,et al.  Is epilepsy a progressive disorder? Prospects for new therapeutic approaches in temporal-lobe epilepsy , 2002, The Lancet Neurology.

[55]  M. G. Koerkamp,et al.  Possible role of the innate immunity in temporal lobe epilepsy , 2008, Epilepsia.

[56]  J. Cross,et al.  Absence of antibodies to glutamate receptor type 3 (GluR3) in Rasmussen encephalitis , 2004, Neurology.

[57]  T. Bártfai,et al.  Interleukin‐1 System in CNS Stress , 2007, Annals of the New York Academy of Sciences.

[58]  R. Mennigen,et al.  Endocytosis and Recycling of Tight Junction Proteins in Inflammation , 2009, Journal of biomedicine & biotechnology.

[59]  J. Schramm,et al.  Treatment of Rasmussen encephalitis half a century after its initial description: Promising prospects and a dilemma , 2009, Epilepsy Research.

[60]  M. Schwartz,et al.  Systemic inflammatory cells fight off neurodegenerative disease , 2010, Nature Reviews Neurology.

[61]  C. Plata-salamán,et al.  Kindling modulates the IL-1β system, TNF-α, TGF-β1, and neuropeptide mRNAs in specific brain regions , 2000 .

[62]  T. Bártfai,et al.  IL‐1β induces a MyD88‐dependent and ceramide‐mediated activation of Src in anterior hypothalamic neurons , 2006, Journal of neurochemistry.

[63]  J. McNamara,et al.  Autoantibodies to glutamate receptor GluR3 in Rasmussen's encephalitis. , 1994, Science.

[64]  D. Sinclair Prednisone therapy in pediatric epilepsy. , 2003, Pediatric neurology.

[65]  N. Stocchetti,et al.  C1-inhibitor attenuates neurobehavioral deficits and reduces contusion volume after controlled cortical impact brain injury in mice* , 2009, Critical care medicine.

[66]  C. Dinarello,et al.  Immunological and inflammatory functions of the interleukin-1 family. , 2009, Annual review of immunology.

[67]  D. Torpy,et al.  Stress, Corticotropin‐Releasing Hormone, Glucocorticoids, and the Immune/Inflammatory Response: Acute and Chronic Effects a , 1999, Annals of the New York Academy of Sciences.

[68]  T. Baram,et al.  New Roles for Interleukin-1 Beta in the Mechanisms of Epilepsy , 2007, Epilepsy currents.

[69]  M. Mikati,et al.  Intravenous immunoglobulin therapy in intractable childhood epilepsy: Open-label study and review of the literature , 2010, Epilepsy & Behavior.

[70]  N. Rothwell CRF is involved in the pyrogenic and thermogenic effects of interleukin 1 beta in the rat. , 1989, The American journal of physiology.

[71]  Q. Pittman,et al.  Cytokines and brain excitability , 2012, Frontiers in Neuroendocrinology.

[72]  S. Kulkarni,et al.  Cyclooxygenase in epilepsy: from perception to application. , 2009, Drugs of Today.

[73]  F. Dorandeu,et al.  Prolonged inflammatory gene response following soman-induced seizures in mice. , 2007, Toxicology.

[74]  K. Frei,et al.  Molecular and cellular permeability control at the blood–brain barrier , 2001, Brain Research Reviews.

[75]  C. Sommer,et al.  Regulatory T cells are key cerebroprotective immunomodulators in acute experimental stroke , 2009, Nature Medicine.

[76]  J. Rosenow,et al.  Cellular injury and neuroinflammation in children with chronic intractable epilepsy , 2009, Journal of Neuroinflammation.

[77]  C. Dinarello Review: Infection, fever, and exogenous and endogenous pyrogens: some concepts have changed , 2004, Journal of endotoxin research.

[78]  John S Duncan,et al.  Adult epilepsy , 2006, The Lancet.

[79]  A. Nehlig,et al.  Inflammation in rat pups subjected to short hyperthermic seizures enhances brain long-term excitability , 2009, Epilepsy Research.

[80]  Tsonwin Hai,et al.  Activating transcription factor 3 (ATF3) represses the expression of CCL4 in murine macrophages. , 2007, Molecular immunology.

[81]  A. Vincent,et al.  The growing recognition of immunotherapy-responsive seizure disorders with autoantibodies to specific neuronal proteins , 2010, Current opinion in neurology.

[82]  J. Wheless,et al.  Treatment of pediatric epilepsy: European expert opinion, 2007. , 2007, Epileptic disorders : international epilepsy journal with videotape.

[83]  G. Juhász,et al.  Facilitation of spike-wave discharge activity by lipopolysaccharides in Wistar Albino Glaxo/Rijswijk rats , 2006, Neuroscience.

[84]  E. Aronica,et al.  Brain Inflammation and Epilepsy , 2010 .

[85]  J. Osborne,et al.  The United Kingdom Infantile Spasms Study (UKISS) comparing hormone treatment with vigabatrin on developmental and epilepsy outcomes to age 14 months: a multicentre randomised trial , 2005, The Lancet Neurology.

[86]  N. Marklund,et al.  Neutralization of interleukin‐1β modifies the inflammatory response and improves histological and cognitive outcome following traumatic brain injury in mice , 2009, The European journal of neuroscience.

[87]  Shuxian Hu,et al.  Cytokine Effects on Glutamate Uptake by Human Astrocytes , 2000, Neuroimmunomodulation.

[88]  G. Pasinetti,et al.  Potentiation of excitotoxicity in transgenic mice overexpressing neuronal cyclooxygenase-2. , 1999, The American journal of pathology.

[89]  Antonio Osculati,et al.  A role for leukocyte-endothelial adhesion mechanisms in epilepsy , 2008, Nature Medicine.

[90]  G. Kollias,et al.  CXCR4-activated astrocyte glutamate release via TNFα: amplification by microglia triggers neurotoxicity , 2001, Nature Neuroscience.

[91]  C. Elger,et al.  Limbic encephalitis as a precipitating event in adult-onset temporal lobe epilepsy , 2007, Neurology.

[92]  K. Katki,et al.  Chemokine CCL2 and its receptor CCR2 are increased in the hippocampus following pilocarpine-induced status epilepticus , 2009, Journal of Neuroinflammation.

[93]  G. SadleirLynette,et al.  Febrile seizures , 2007 .

[94]  Eleonora Aronica,et al.  Innate and adaptive immunity during epileptogenesis and spontaneous seizures: Evidence from experimental models and human temporal lobe epilepsy , 2008, Neurobiology of Disease.

[95]  M. Tsan,et al.  Endogenous ligands of Toll‐like receptors , 2004, Journal of leukocyte biology.

[96]  L. Mucke,et al.  Neurologic disease induced in transgenic mice by cerebral overexpression of interleukin 6. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[97]  E. Vining,et al.  The Pathology of Rasmussen Syndrome: Stages of Cortical Involvement and Neuropathological Studies in 45 Hemispherectomies , 2004, Epilepsia.

[98]  F. Dudek,et al.  Network properties of the dentate gyrus in epileptic rats with hilar neuron loss and granule cell axon reorganization. , 1997, Journal of neurophysiology.

[99]  O. Yeǧin,et al.  Interleukin-1β, Tumor Necrosis Factor-α, and Nitrite Levels in Febrile Seizures , 2002 .

[100]  P. V. van Rijen,et al.  Gene Expression Analysis of Tuberous Sclerosis Complex Cortical Tubers Reveals Increased Expression of Adhesion and Inflammatory Factors , 2009, Brain pathology.

[101]  D. Jung,et al.  Efficacy and prognosis of a short course of prednisolone therapy for pediatric epilepsy. , 2008, European journal of paediatric neurology : EJPN : official journal of the European Paediatric Neurology Society.

[102]  A. Vezzani,et al.  Interleukin-1β Immunoreactivity and Microglia Are Enhanced in the Rat Hippocampus by Focal Kainate Application: Functional Evidence for Enhancement of Electrographic Seizures , 1999, The Journal of Neuroscience.

[103]  H. Korn,et al.  Interleukin-1β induces hyperpolarization and modulates synaptic inhibition in preoptic and anterior hypothalamic neurons , 2006, Neuroscience.

[104]  Giovambattista De Sarro,et al.  Seizure susceptibility to various convulsant stimuli of knockout interleukin-6 mice , 2004, Pharmacology Biochemistry and Behavior.

[105]  D. Spencer,et al.  Characteristics of medial temporal lobe epilepsy: I. Results of history and physical examination , 1993, Annals of neurology.

[106]  Q. Pittman,et al.  Early Life Activation of Toll-Like Receptor 4 Reprograms Neural Anti-Inflammatory Pathways , 2010, The Journal of Neuroscience.

[107]  R. Ransohoff,et al.  Three or more routes for leukocyte migration into the central nervous system , 2003, Nature Reviews Immunology.

[108]  M. Shapira,et al.  Transcriptome Profiling Reveals TGF-β Signaling Involvement in Epileptogenesis , 2009, The Journal of Neuroscience.

[109]  G. Rondouin,et al.  Inflammatory reactions in human medial temporal lobe epilepsy with hippocampal sclerosis , 2002, Brain Research.

[110]  T. Baram,et al.  Corticotropin (ACTH) acts directly on amygdala neurons to down‐regulate corticotropin‐releasing hormone gene expression , 2001, Annals of neurology.

[111]  S. Akira,et al.  Toll-like receptors: critical proteins linking innate and acquired immunity , 2001, Nature Immunology.

[112]  P. Schweitzer,et al.  Inhibition of cyclooxygenase-2 elicits a CB1-mediated decrease of excitatory transmission in rat CA1 hippocampus , 2005, Neuropharmacology.

[113]  A. Vezzani,et al.  Tumor necrosis factor‐α inhibits seizures in mice via p75 receptors , 2005 .

[114]  S. Kulkarni,et al.  Significantly higher serologic responses of Chlamydia trachomatis B group serovars versus C and I serogroups. , 2009 .

[115]  J. Aarli,et al.  Epilepsy and the immune system. , 2000, Archives of neurology.

[116]  M. Sayyah,et al.  The bacterial endotoxin lipopolysaccharide enhances seizure susceptibility in mice: involvement of proinflammatory factors: nitric oxide and prostaglandins , 2003, Neuroscience.

[117]  A. Koch,et al.  Chemokines and angiogenesis , 2001, Current opinion in rheumatology.

[118]  E. Perucca,et al.  Development of new antiepileptic drugs: challenges, incentives, and recent advances , 2007, The Lancet Neurology.

[119]  O. Devinsky,et al.  Immunology and epilepsy. , 2008, Reviews in neurological diseases.

[120]  A. Vezzani,et al.  The role of cytokines in the pathophysiology of epilepsy , 2008, Brain, Behavior, and Immunity.

[121]  B. Litt,et al.  Temporal lobe epilepsy after experimental prolonged febrile seizures: prospective analysis. , 2006, Brain : a journal of neurology.

[122]  J. C. Baayen,et al.  Tissue plasminogen activator and urokinase plasminogen activator in human epileptogenic pathologies , 2010, Neuroscience.

[123]  A. Vezzani,et al.  Brain Inflammation in Epilepsy: Experimental and Clinical Evidence , 2005, Epilepsia.

[124]  Imad Najm,et al.  Seizure‐Promoting Effect of Blood–Brain Barrier Disruption , 2007, Epilepsia.

[125]  A. Galanopoulou Epilepsy: Mechanisms, Models, and Translational Perspectives Jong M. Rho , 2011, Epilepsy & Behavior.

[126]  N. Perkins,et al.  Integrating cell-signalling pathways with NF-κB and IKK function , 2007, Nature Reviews Molecular Cell Biology.

[127]  M. Mackay,et al.  CME Practice Parameter : Medical Treatment of Infantile Spasms , 2004 .

[128]  Asla Pitkänen,et al.  Molecular and cellular basis of epileptogenesis in symptomatic epilepsy , 2009, Epilepsy & Behavior.

[129]  U. Heinemann,et al.  Astrocytic Dysfunction in Epileptogenesis: Consequence of Altered Potassium and Glutamate Homeostasis? , 2009, The Journal of Neuroscience.

[130]  G. Teskey,et al.  Postnatal Inflammation Increases Seizure Susceptibility in Adult Rats , 2008, The Journal of Neuroscience.

[131]  H. Nakanishi,et al.  Acute p38-mediated inhibition of NMDA-induced outward currents in hippocampal CA1 neurons by interleukin-1β , 2010, Neurobiology of Disease.

[132]  T. Baram,et al.  Neuropeptide-mediated excitability: a key triggering mechanism for seizure generation in the developing brain , 1998, Trends in Neurosciences.

[133]  T. Ichiyama,et al.  Tumor necrosis factor‐a, interleukin‐lβ, and interleukin‐6 in cerebrospinal fluid from children with prolonged febrile seizures Comparison with acute encephalitis/encephalopathy , 1998, Neurology.

[134]  T. Baram,et al.  ACTH treatment of infantile spasms: mechanisms of its effects in modulation of neuronal excitability. , 2002, International review of neurobiology.

[135]  T. Baram,et al.  Interleukin‐1β contributes to the generation of experimental febrile seizures , 2005, Annals of neurology.

[136]  R. Riikonen Infantile spasms: therapy and outcome. , 2004, Journal of child neurology.

[137]  Wolfgang Löscher,et al.  The neurobiology of antiepileptic drugs , 2004, Nature Reviews Neuroscience.

[138]  J. Freedman,et al.  A role for IL-1 receptor antagonist or other cytokines in the acute therapeutic effects of IVIg? , 2007, Blood.

[139]  G. Kollias,et al.  Astrocyte-specific but not neuron-specific transmembrane TNF triggers inflammation and degeneration in the central nervous system of transgenic mice. , 1997, Journal of immunology.

[140]  D. Freshwater A U , 2002 .

[141]  Keun-Hwa Jung,et al.  Cyclooxygenase-2 inhibitor, celecoxib, inhibits the altered hippocampal neurogenesis with attenuation of spontaneous recurrent seizures following pilocarpine-induced status epilepticus , 2006, Neurobiology of Disease.

[142]  N. Rothwell,et al.  Cytokines and acute neurodegeneration , 1997, Molecular Psychiatry.

[143]  E. Aronica,et al.  Blood-brain barrier leakage may lead to progression of temporal lobe epilepsy. , 2007, Brain : a journal of neurology.

[144]  C. Kaltschmidt,et al.  NF-kB: a crucial transcription factor for glial and neuronal cell function , 1997, Trends in Neurosciences.

[145]  M. Mikati,et al.  Efficacy of intravenous immunoglobulin in Landau-Kleffner syndrome. , 2002, Pediatric neurology.

[146]  D. Sanderson,et al.  Malaise in the water maze: Untangling the effects of LPS and IL-1β on learning and memory , 2008, Brain, Behavior, and Immunity.

[147]  A. Becker,et al.  Molecular profiling of temporal lobe epilepsy: comparison of data from human tissue samples and animal models , 2004, Epilepsy Research.

[148]  F. Tang,et al.  CCR3, CCR2A and macrophage inflammatory protein (MIP)‐1α, monocyte chemotactic protein‐1 (MCP‐1) in the mouse hippocampus during and after pilocarpine‐induced status epilepticus (PISE) , 2009, Neuropathology and applied neurobiology.

[149]  N. Rothwell,et al.  Brain sites of action of endogenous interleukin‐1 in the febrile response to localized inflammation in the rat , 1999, The Journal of physiology.

[150]  L. Lagae,et al.  Steroids in intractable childhood epilepsy: Clinical experience and review of the literature , 2005, Seizure.

[151]  S. Garattini,et al.  Inflammatory cytokines and related genes are induced in the rat hippocampus by limbic status epilepticus , 2000, The European journal of neuroscience.

[152]  L. J. Eldik,et al.  Suppression of acute proinflammatory cytokine and chemokine upregulation by post-injury administration of a novel small molecule improves long-term neurologic outcome in a mouse model of traumatic brain injury , 2008, Journal of Neuroinflammation.

[153]  B. Winblad,et al.  Increased expression of mRNA encoding interleukin‐1β and caspase‐1, and the secreted isoform of interleukin‐1 receptor antagonist in the rat brain following systemic kainic acid administration , 2000, Journal of neuroscience research.

[154]  M. Baybis,et al.  Expression of ICAM-1, TNF-α, NFκB, and MAP kinase in tubers of the tuberous sclerosis complex , 2003, Neurobiology of Disease.

[155]  N. Bazan,et al.  Lipid signaling: sleep, synaptic plasticity, and neuroprotection. , 2005, Prostaglandins & other lipid mediators.

[156]  R. Sapolsky,et al.  Interleukin-1 stimulates the secretion of hypothalamic corticotropin-releasing factor. , 1987, Science.

[157]  P. Maquet,et al.  Landau‐Kleffner Syndrome: A Pharmacologic Study of Five Cases , 1990, Epilepsia.

[158]  L. Ivashkiv,et al.  Lipopolysaccharide-Induced Expression of Matrix Metalloproteinases in Human Monocytes Is Suppressed by IFN-γ via Superinduction of ATF-3 and Suppression of AP-11 , 2008, The Journal of Immunology.

[159]  C. Hunter,et al.  Trafficking of immune cells in the central nervous system. , 2010, The Journal of clinical investigation.

[160]  F. L. D. Silva,et al.  Complement activation in experimental and human temporal lobe epilepsy , 2007, Neurobiology of Disease.

[161]  N. Rothwell,et al.  Interleukin-1 and neuronal injury , 2005, Nature Reviews Immunology.

[162]  C L Galli,et al.  Interleukin-1β Enhances NMDA Receptor-Mediated Intracellular Calcium Increase through Activation of the Src Family of Kinases , 2003, The Journal of Neuroscience.

[163]  T. Bártfai,et al.  Delineation of the Proinflammatory Cytokine Cascade in Fever Induction a , 1998, Annals of the New York Academy of Sciences.

[164]  Kevin J. Tracey,et al.  The inflammatory reflex , 2002, Nature.

[165]  S. Rivest,et al.  Innate immune reaction in response to seizures: implications for the neuropathology associated with epilepsy , 2004, Neurobiology of Disease.

[166]  T. Bártfai,et al.  Cytokines in neuronal cell types , 1993, Neurochemistry International.

[167]  R. Sankar,et al.  Inflammation enhances epileptogenesis in the developing rat brain , 2010, Neurobiology of Disease.

[168]  R. Sapolsky,et al.  Characterization of monocyte chemoattractant protein-1 expression following a kainate model of status epilepticus , 2007, Brain Research.

[169]  T. Holford,et al.  Seizures with Fever After Unprovoked Seizures: An Analysis in Children Followed from the Time of a First Febrile Seizure , 1998, Epilepsia.

[170]  Wytse J. Wadman,et al.  Potential New Antiepileptogenic Targets Indicated by Microarray Analysis in a Rat Model for Temporal Lobe Epilepsy , 2006, The Journal of Neuroscience.

[171]  Wolfgang Löscher,et al.  The COX-2 inhibitor parecoxib is neuroprotective but not antiepileptogenic in the pilocarpine model of temporal lobe epilepsy , 2010, Experimental Neurology.

[172]  T. Davis,et al.  The Blood-Brain Barrier/Neurovascular Unit in Health and Disease , 2005, Pharmacological Reviews.

[173]  G. Mathern,et al.  Increased activation of Iba1+ microglia in pediatric epilepsy patients with Rasmussen's encephalitis compared with cortical dysplasia and tuberous sclerosis complex , 2009, Neurobiology of Disease.

[174]  M. Morganti-Kossmann,et al.  Role of Chemokines in CNS Health and Pathology: A Focus on the CCL2/CCR2 and CXCL8/CXCR2 Networks , 2010, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[175]  A. Obenaus,et al.  Epileptogenesis Provoked by Prolonged Experimental Febrile Seizures: Mechanisms and Biomarkers , 2010, The Journal of Neuroscience.

[176]  Q. Pittman,et al.  Neonatal inflammation produces selective behavioural deficits and alters N‐methyl‐d‐aspartate receptor subunit mRNA in the adult rat brain , 2008, The European journal of neuroscience.

[177]  Fred H. Gage,et al.  Mechanisms Underlying Inflammation in Neurodegeneration , 2010, Cell.

[178]  P. V. van Rijen,et al.  Evaluation of the innate and adaptive immunity in type I and type II focal cortical dysplasias , 2010, Epilepsia.

[179]  J. Velíšková,et al.  Glia activation and cytokine increase in rat hippocampus by kainic acid-induced status epilepticus during postnatal development , 2003, Neurobiology of Disease.

[180]  K. Laxer,et al.  Gene expression analysis reveals altered brain transcription of glutamate receptors and inflammatory genes in a patient with chronic focal (Rasmussen's) encephalitis , 2002, Journal of Neuroimmunology.

[181]  Simona Frigerio,et al.  Expression of Adhesion Factors Induced by Epileptiform Activity in the Endothelium of the Isolated Guinea Pig Brain In Vitro , 2007, Epilepsia.

[182]  X. Zhu,et al.  Expression of monocyte chemoattractant protein-1 in brain tissue of patients with intractable epilepsy. , 2008, Clinical neuropathology.

[183]  C. Bien,et al.  Anti-NMDA-receptor encephalitis: a cause of psychiatric, seizure, and movement disorders in young adults , 2008, The Lancet Neurology.

[184]  H. Lodish,et al.  Role of Transforming Growth Factor in Human Disease , 2000 .

[185]  Y. S. al-Ghamdy,et al.  Epidemiology, pathophysiology and management , 2003 .

[186]  A. Vezzani,et al.  Status epilepticus induces time-dependent neuronal and astrocytic expression of interleukin-1 receptor type I in the rat limbic system , 2006, Neuroscience.

[187]  A. Pitkänen,et al.  Epileptogenesis-related genes revisited. , 2006, Progress in brain research.