Simplified Tele-Operation of Mobile-Manipulator Systems Using Knowledge of Their Singular Configurations

An algorithm for the simplified tele-operation of a mobile-manipulator system is presented. It allows for unified, intuitive, and coordinated control. Unlike other approaches, the mobile-manipulator system is modelled and controlled as two separate entities rather than as a whole. The algorithm consists of three states. In the first state, a joystick is used to freely control the manipulator’s position and orientation. The second state occurs when the manipulator approaches a singular configuration. This causes the mobile base to proceed in such a way as to keep the end-effector moving in its last direction. This is done through the use of a simple optimization routine. The third state is triggered by the user: once the end-effector is in the desired position, the mobile base and manipulator both move with respect to one another keeping the end-effector stationary and placing the manipulator into an ideal configuration. The proposed algorithm avoids the problems of algorithmic singularities and simplifies the control approach. A preliminary version of the algorithm has been implemented on the Jasper mobile-manipulator system with success.Copyright © 2009 by ASME