Retrieval of biophysical vegetation parameters using simultaneous inversion of high resolution remote sensing imagery constrained by a vegetation index

[1]  A. Berjón,et al.  Atmospheric turbidity determined by the annual cycle of the aerosol optical depth over north-center Spain from ground (AERONET) and satellite (MODIS) , 2013 .

[2]  Miguel Delibes,et al.  Ecosystem functioning of protected and altered Mediterranean environments: A remote sensing classification in Doñana, Spain , 2010 .

[3]  W. Verhoef,et al.  PROSPECT+SAIL models: A review of use for vegetation characterization , 2009 .

[4]  Wolfram Mauser,et al.  Inversion of a canopy reflectance model using hyperspectral imagery for monitoring wheat growth and estimating yield , 2009, Precision Agriculture.

[5]  Roberta E. Martin,et al.  PROSPECT-4 and 5: Advances in the leaf optical properties model separating photosynthetic pigments , 2008 .

[6]  A. Skidmore,et al.  Inversion of a radiative transfer model for estimating vegetation LAI and chlorophyll in a heterogeneous grassland , 2008 .

[7]  F. L. Dimet,et al.  Multitemporal-patch ensemble inversion of coupled surface-atmosphere radiative transfer models for land surface characterization , 2008 .

[8]  W. Verhoef,et al.  Coupled soil–leaf-canopy and atmosphere radiative transfer modeling to simulate hyperspectral multi-angular surface reflectance and TOA radiance data , 2007 .

[9]  R. Houborg,et al.  Combining vegetation index and model inversion methods for the extraction of key vegetation biophysical parameters using Terra and Aqua MODIS reflectance data , 2007 .

[10]  Frédéric Baret,et al.  Validation of global moderate-resolution LAI products: a framework proposed within the CEOS land product validation subgroup , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[11]  John R. Miller,et al.  Assessing vineyard condition with hyperspectral indices: Leaf and canopy reflectance simulation in a row-structured discontinuous canopy , 2005 .

[12]  Sandra Díaz,et al.  Specific leaf area and dry matter content estimate thickness in laminar leaves. , 2005, Annals of botany.

[13]  Chunlin Huang,et al.  Investigating relationship between Landsat ETM+ data and LAI in a semi-arid grassland of Northwest China , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.

[14]  C. Atzberger Object-based retrieval of biophysical canopy variables using artificial neural nets and radiative transfer models , 2004 .

[15]  C. Gueymard The sun's total and spectral irradiance for solar energy applications and solar radiation models , 2004 .

[16]  Frédéric Baret,et al.  Intercalibration of vegetation indices from different sensor systems , 2003 .

[17]  S. Liang Quantitative Remote Sensing of Land Surfaces , 2003 .

[18]  O. Boucher,et al.  A satellite view of aerosols in the climate system , 2002, Nature.

[19]  M. Weiss,et al.  Reliability of the estimation of vegetation characteristics by inversion of three canopy reflectance models on airborne POLDER data , 2002 .

[20]  John R. Miller,et al.  Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture , 2002 .

[21]  Andrea Saltelli,et al.  Sensitivity Analysis for Importance Assessment , 2002, Risk analysis : an official publication of the Society for Risk Analysis.

[22]  John R. Miller,et al.  Scaling-up and model inversion methods with narrowband optical indices for chlorophyll content estimation in closed forest canopies with hyperspectral data , 2001, IEEE Trans. Geosci. Remote. Sens..

[23]  P. Mumby,et al.  Remote Sensing Handbook for Tropical Coastal Management , 2000 .

[24]  D. Tanré,et al.  Remote Sensing of Tropospheric Aerosols from Space: Past, Present, and Future. , 1999 .

[25]  Karin S. Fassnacht,et al.  Relationships between leaf area index and Landsat TM spectral vegetation indices across three temperate zone sites , 1999 .

[26]  Stefano Tarantola,et al.  A Quantitative Model-Independent Method for Global Sensitivity Analysis of Model Output , 1999, Technometrics.

[27]  T. Carlson,et al.  On the relation between NDVI, fractional vegetation cover, and leaf area index , 1997 .

[28]  Didier Tanré,et al.  Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: an overview , 1997, IEEE Trans. Geosci. Remote. Sens..

[29]  A. Kuusk A Markov chain model of canopy reflectance , 1995 .

[30]  F. M. Danson,et al.  Extraction of vegetation biophysical parameters by inversion of the PROSPECT + SAIL models on sugar beet canopy reflectance data. Application to TM and AVIRIS sensors , 1995 .

[31]  A. Wellburn The Spectral Determination of Chlorophylls a and b, as well as Total Carotenoids, Using Various Solvents with Spectrophotometers of Different Resolution* , 1994 .

[32]  R. Jackson,et al.  Multisite Analyses of Spectral-Biophysical Data for Wheat , 1992 .

[33]  Garik Gutman,et al.  Vegetation indices from AVHRR: An update and future prospects , 1991 .

[34]  F. Baret,et al.  PROSPECT: A model of leaf optical properties spectra , 1990 .

[35]  G. Campbell Derivation of an angle density function for canopies with ellipsoidal leaf angle distributions , 1990 .

[36]  Paul G. Jarvis,et al.  Mean leaf angles for the ellipsoidal inclination angle distribution , 1988 .

[37]  G. Campbell Extinction coefficients for radiation in plant canopies calculated using an ellipsoidal inclination angle distribution , 1986 .

[38]  W. Verhoef Light scattering by leaf layers with application to canopy reflectance modelling: The SAIL model , 1984 .

[39]  N. Goel,et al.  Inversion of vegetation canopy reflectance models for estimating agronomic variables. I. Problem definition and initial results using the Suits model , 1983 .

[40]  H. Gausman,et al.  Relation of light reflectance to histological and physical evaluations of cotton leaf maturity. , 1970, Applied optics.

[41]  Arthur J. Richardson,et al.  Plant-Canopy Irradiance Specified by the Duntley Equations , 1970 .

[42]  H. Gausman,et al.  Interaction of Isotropic Light with a Compact Plant Leaf , 1969 .

[43]  Shunlin Liang,et al.  Advances in Land Remote Sensing , 2008 .

[44]  P. Zarco-Tejadaa,et al.  Hyperspectral indices and model simulation for chlorophyll estimation in open-canopy tree crops , 2004 .

[45]  Yuri Knyazikhin,et al.  Retrieval of canopy biophysical variables from bidirectional reflectance Using prior information to solve the ill-posed inverse problem , 2003 .

[46]  R. Vergaz,et al.  Creación de una base de datos espectroradiométricos de la refectancia de cultivos de secano , 2001 .

[47]  J. Casasnovas,et al.  Teledetección : medio ambiente y cambio global , 2001 .

[48]  J. Araus,et al.  Spectral vegetation indices as nondestructive tools for determining durum wheat yield. , 2000 .

[49]  T. Williams,et al.  OBTAINING SPATIAL AND TEMPORAL VEGETATION DATA FROM LANDSAT MSS AND AVHRR/NOAA SATELLITE IMAGES FOR A HYDROLOGIC MODEL , 1997 .

[50]  N. Goel Models of vegetation canopy reflectance and their use in estimation of biophysical parameters from reflectance data , 1988 .

[51]  N. Bunnik The multispectral reflectance of shortwave radiation by agricultural crops in relation with their morphological and optical properties , 1978 .

[52]  G. Suits The calculation of the directional reflectance of a vegetative canopy , 1971 .

[53]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..