Generalized (anti) Yetter-Drinfeld modules as components of a braided T-category

AbstractIf H is a Hopf algebra with bijective antipode and α, β ∈ AutHopf(H), we introduce a category $$_H \mathcal{Y}\mathcal{D}^H (\alpha ,\beta )$$ , generalizing both Yetter-Drinfeld modules and anti-Yetter-Drinfeld modules. We construct a braided T-category $$\mathcal{Y}\mathcal{D}(H)$$ having all the categories $$_H \mathcal{Y}\mathcal{D}^H (\alpha ,\beta )$$ as components, which, if H is finite dimensional, coincides with the representations of a certain quasitriangular T-coalgebra DT(H) that we construct. We also prove that if (α, β) admits a so-called pair in involution, then $$_H \mathcal{Y}\mathcal{D}^H (\alpha ,\beta )$$ is isomorphic to the category of usual Yetter-Drinfeld modules $$_H \mathcal{Y}\mathcal{D}^H $$ .

[1]  DIAGONAL CROSSED PRODUCTS BY DUALS OF QUASI-QUANTUM GROUPS , 1997, q-alg/9708004.

[2]  Masoud Khalkhali,et al.  Stable anti-Yetter-Drinfeld modules , 2004 .

[3]  Susan Montgomery,et al.  Hopf algebras and their actions on rings , 1993 .

[4]  Li Jin-q,et al.  Hopf algebras , 2019, Graduate Studies in Mathematics.

[5]  Nicolai Reshetikhin,et al.  Quantum Groups , 1993 .

[6]  Alain Connes,et al.  Hopf Algebras, Cyclic Cohomology and the Transverse Index Theorem , 1998 .

[7]  P. Jara,et al.  Hopf–Cyclic Homology and Relative Cyclic Homology of Hopf–Galois Extensions , 2006 .

[8]  Alain Connes,et al.  Cyclic Cohomology and Hopf Algebra Symmetry , 2000 .

[9]  A. Virelizier Graded Quantum Groups and Quasitriangular Hopf Group-Coalgebras , 2005 .

[10]  Stefaan Caenepeel,et al.  Frobenius and Separable Functors for Generalized Module Categories and Nonlinear Equations , 2002 .

[11]  S. Majid Foundations of Quantum Group Theory , 1995 .

[12]  P. Jara,et al.  Cyclic homology of Hopf Galois extensions and Hopf algebras , 2003, math/0307099.

[13]  Marcos Zunino Yetter–Drinfeld modules for crossed structures , 2004 .

[14]  Stefaan Caenepeel,et al.  The Brauer group of Yetter-Drinfel'd module algebras , 1997 .

[15]  P. M. Hajac,et al.  Hopf-cyclic homology and cohomology with coefficients , 2003 .

[16]  Vladimir Turaev Homotopy field theory in dimension 3 and crossed group-categories , 2000 .

[17]  S. Caenepeel,et al.  A Categorical Approach to Turaev's Hopf Group-Coalgebras , 2004, math/0409600.