Bandwidth Enhancement to Continuous-Time Input Pipeline ADCs

This paper presents design analysis and insights for a new continuous-time input pipeline (CTIP) analog-to-digital converter (ADC) architecture that has enhanced bandwidth. An all-pass filter-based analog delay in the signal path allows bandwidth extension to Nyquist signal bandwidths. A resetting integrator gain stage provides a signal path delay helping to increase the bandwidth while reducing the power cost. The noise filtering property of the resetting integrator gain stage preserves the medium resistive input benefit of CTIP ADCs. The resetting integrator allows the architecture to be implemented with a feedforward compensated op-amp using low-voltage CMOS processes. This paper has been verified by simulation results of a CTIP ADC with 1.2-V supply voltage designed in TSMC’s 65-nm CMOS technology.

[1]  M. P. Flynn,et al.  Digital calibration incorporating redundancy of flash ADCs , 2003, IEEE Trans. Circuits Syst. II Express Briefs.

[2]  Han Yan,et al.  A 1.5 mW 68 dB SNDR 80 Ms/s 2 $\times$ Interleaved Pipelined SAR ADC in 28 nm CMOS , 2014, IEEE Journal of Solid-State Circuits.

[3]  Thomas Blon,et al.  A 20-mW 640-MHz CMOS continuous-time ΣΔ ADC with 20-MHz signal bandwidth, 80-dB dynamic range and 12-bit ENOB , 2006 .

[4]  Georges Gielen,et al.  Complementary DAC topology for reduced output impedance dependency and improved dynamic performance , 2012 .

[5]  Ian Galton,et al.  A 130 mW 100 MS/s Pipelined ADC With 69 dB SNDR Enabled by Digital Harmonic Distortion Correction , 2009, IEEE Journal of Solid-State Circuits.

[6]  C. Holuigue,et al.  A 20-mW 640-MHz CMOS Continuous-Time $\Sigma\Delta$ ADC With 20-MHz Signal Bandwidth, 80-dB Dynamic Range and 12-bit ENOB , 2006, IEEE Journal of Solid-State Circuits.

[7]  Karthikeyan Reddy,et al.  Fundamental limitations of continuous-time delta-sigma modulators due to clock jitter , 2006, 2006 IEEE International Symposium on Circuits and Systems.

[8]  Ahmad Mirzaei,et al.  Analysis of first-order anti-aliasing integration sampler , 2008, IEEE Transactions on Circuits and Systems I: Regular Papers.

[9]  Hajime Shibata,et al.  15.5 A 930mW 69dB-DR 465MHz-BW CT 1-2 MASH ADC in 28nm CMOS , 2016, 2016 IEEE International Solid-State Circuits Conference (ISSCC).

[10]  Hajime Shibata,et al.  16.2 A 9GS/s 1GHz-BW oversampled continuous-time pipeline ADC achieving −161dBFS/Hz NSD , 2017, 2017 IEEE International Solid-State Circuits Conference (ISSCC).

[11]  S. Okwit,et al.  ON SOLID-STATE CIRCUITS. , 1963 .

[12]  Hae-Seung Lee,et al.  A Continuous-Time Sturdy-MASH $\Delta\Sigma$ Modulator in 28 nm CMOS , 2015, IEEE Journal of Solid-State Circuits.

[13]  William Yang,et al.  A Continuous-Time 0–3 MASH ADC Achieving 88 dB DR With 53 MHz BW in 28 nm CMOS , 2014, IEEE Journal of Solid-State Circuits.

[14]  Hajime Shibata,et al.  Advances in high-speed continuous-time delta-sigma modulators , 2014, Proceedings of the IEEE 2014 Custom Integrated Circuits Conference.

[15]  Un-Ku Moon,et al.  Analysis of Residue Integration Sampling With Improved Jitter Immunity , 2011, IEEE Transactions on Circuits and Systems II: Express Briefs.

[16]  Pavan Kumar Hanumolu,et al.  Continuous-Time Input Pipeline ADCs , 2010, IEEE Journal of Solid-State Circuits.

[17]  Michael P. Flynn,et al.  A SAR-Assisted Two-Stage Pipeline ADC , 2011, IEEE Journal of Solid-State Circuits.

[18]  Janet Brunsilius,et al.  A 14 Bit 1 GS/s RF Sampling Pipelined ADC With Background Calibration , 2014, IEEE Journal of Solid-State Circuits.

[19]  Dong-Young Chang,et al.  11.6 A 21mW 15b 48MS/s zero-crossing pipeline ADC in 0.13μm CMOS with 74dB SNDR , 2014, 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC).

[20]  Maarten Vertregt,et al.  A 1.2-V 250-mW 14-b 100-MS/s Digitally Calibrated Pipeline ADC in 90-nm CMOS , 2009, IEEE Journal of Solid-State Circuits.