Aspects of the Finite Element Method as Applied to Aero-Space Structures

A unique combination of aero-spacecraft technology is necessary for the success of the ‘Space Shuttle Program’ which forms the next major manned space flight program in the Western World. The primary design objectives involve analytical problems of so far unseen complexity and magnitude. The parallel burn at lift off involves liquid and solid rocket engines which results in accelerations up to 1.5 g’s. Moreover, during the early atmospheric flight the vehicle will experience severe aerodynamic forces and induced aero elastic effects due to its geometric characteristics. Having achieved Earth orbit, the Shuttle Orbiter will serve a number of functions, involving both low and high power thrusts for different maneuvers. The return flight to Earth is likely to be in the 8000 ms−1 range forming a severe challenge to the analysis since the large scale structure is exposed to extreme environmental conditions. Both the success of a given mission, and the system reliability for an envisaged 100-flight vehicle, depend on the solution of these problems.

[1]  G. Fuchs,et al.  Hypermatrix solution of large sets of symmetric positive-definite linear equations , 1972 .

[2]  R. Uhrig Reduction of the number of unknowns in the displacement method applied to kinetic problems , 1966 .

[3]  J. H. Argyris,et al.  Some General Considerations on the Natural Mode Technique , 1969, The Aeronautical Journal (1968).

[4]  Moshe F. Rubinstein,et al.  Creep analysis of axisymmetric bodies using finite elements , 1968 .

[5]  J. H. Argyris,et al.  The Hermes 8 Element for the Matrix Displacement Method , 1968, The Aeronautical Journal (1968).

[6]  A. Chan,et al.  The Analysis of Cooling Towers by the Matrix Finite Element Method , 1970, The Aeronautical Journal (1968).

[7]  Robert E. Fulton,et al.  Accuracy and Convergence of Finite Element Approximations , 1968 .

[8]  M. F. Rubinstein,et al.  Dynamics of structures , 1964 .

[9]  R. Guyan Reduction of stiffness and mass matrices , 1965 .

[10]  John Argyris,et al.  Non-linear oscillations using the finite element technique , 1973 .

[11]  John Argyris,et al.  Methods of elastoplastic analysis , 1972 .

[12]  Ray W. Clough,et al.  Convergence Criteria for Iterative Processes , 1972 .

[13]  J. Penzien,et al.  Evaluation of orthogonal damping matrices , 1972 .

[14]  Nathan M. Newmark,et al.  A Method of Computation for Structural Dynamics , 1959 .

[15]  J. Oden Finite Elements of Nonlinear Continua , 1971 .

[16]  J. H. Argyris,et al.  Recent advances in matrix methods of structural analysis , 1964 .

[17]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[18]  David Bushnell,et al.  Finite-difference energy method for nonlinear shell analysis , 1971 .

[19]  H. Balmer,et al.  Elastoplastic and creep analysis with the ASKA program system , 1974 .

[20]  P. C. Dunne Complete Polynomial Displacement Fields for Finite Element Method , 1968, The Aeronautical Journal (1968).

[21]  O. C. Zienkiewicz,et al.  Curved, isoparametric, “quadrilateral” elements for finite element analysis , 1968 .

[22]  John Argyris,et al.  General Treatment of Structural Modifications , 1972 .

[23]  J. H. Argyris,et al.  Energy theorems and structural analysis , 1960 .

[24]  Dietrich Küchemann,et al.  Progress in aeronautical sciences , 1961 .

[25]  F. L. Bauer Das Verfahren der Treppeniteration und verwandte Verfahren zur Lösung algebraischer Eigenwertprobleme , 1957 .

[26]  D. W. Scharpf,et al.  Some General Considerations on the Natural Mode Technique , 1969, The Aeronautical Journal (1968).

[27]  J. H. Argyris,et al.  The LUMINA Element for the Matrix Displacement Method , 1968, The Aeronautical Journal (1968).

[28]  R. Mclay,et al.  COMPLETENESS AND CONVERGENCE PROPERTIES OF FINITE ELEMENT DISPLACEMENT FUNCTIONS .- A GENERAL TREATMENT , 1967 .

[29]  John Argyris,et al.  Finite Elements in Time and Space , 1969, The Aeronautical Journal (1968).

[30]  John Argyris,et al.  On the application of the SHEBA shell element , 1972 .

[31]  Theodore H. H. Pian,et al.  Basis of finite element methods for solid continua , 1969 .

[32]  A. Jennings A direct iteration method of obtaining latent roots and vectors of a symmetric matrix , 1967, Mathematical Proceedings of the Cambridge Philosophical Society.

[33]  J. Argyris,et al.  Elasto-plastic Matrix Displacement Analysis of Three-dimensional Continua , 1965, The Journal of the Royal Aeronautical Society.

[34]  Edward L. Wilson,et al.  Dynamic finite element analysis of arbitrary thin shells , 1971 .

[35]  O. C. Zienkiewicz,et al.  Elasto‐plastic solutions of engineering problems ‘initial stress’, finite element approach , 1969 .

[36]  Discretization and computational errors in high-order finite elements , 1971 .

[37]  Ernst Schrem,et al.  Computer Implementation of the Finite-Element Procedure , 1973 .

[38]  D. W. Scharpf,et al.  The SHEBA Family of Shell Elements for the Matrix Displacement Method , 1968, The Aeronautical Journal (1968).

[39]  F. A. Leckie,et al.  Creep problems in structural members , 1969 .

[40]  C. L. Morgan,et al.  Continua and Discontinua , 1916 .

[41]  J. H. Argyris,et al.  Applications of finite elements in space and time , 1972 .

[42]  Edward L. Wilson,et al.  Nonlinear dynamic analysis of complex structures , 1972 .

[43]  J. H. Argyris,et al.  Die elastoplastische Berechnung von allgemeinen Tragwerken und Kontinua , 1969 .