The Seventh QBF Solvers Evaluation (QBFEVAL'10)

In this paper we report about QBFEVAL’10, the seventh in a series of events established with the aim of assessing the advancements in reasoning about quantified Boolean formulas (QBFs). The paper discusses the results obtained and the experimental setup, from the criteria used to select QBF instances to the evaluation infrastructure. We also discuss the current state-of-the-art in light of past challenges and we envision future research directions that are motivated by the results of QBFEVAL’10.

[1]  Daniel Kroening,et al.  Ranking Function Synthesis for Bit-Vector Relations , 2010, TACAS.

[2]  Luca Pulina,et al.  Treewidth: A Useful Marker of Empirical Hardness in Quantified Boolean Logic Encodings , 2008, LPAR.

[3]  Hubie Chen,et al.  Looking Algebraically at Tractable Quantified Boolean Formulas , 2004, SAT.

[4]  Luca Pulina,et al.  Ranking and Reputation Systems in the QBF Competition , 2007, AI*IA.

[5]  M. Fox,et al.  The 3rd International Planning Competition: Results and Analysis , 2003, J. Artif. Intell. Res..

[6]  Albert Oliveras,et al.  Design and Results of the 3rd Annual Satisfiability Modulo Theories Competition (SMT-Comp 2007) , 2008, Int. J. Artif. Intell. Tools.

[7]  Armin Biere,et al.  Resolve and Expand , 2004, SAT.

[8]  Luca Pulina,et al.  A self-adaptive multi-engine solver for quantified Boolean formulas , 2009, Constraints.

[9]  Enrico Giunchiglia,et al.  Preprocessing Techniques for QBFs , 2008, RCRA.

[10]  Bernd Becker,et al.  QmiraXT - A Multithreaded QBF Solver , 2009, MBMV.

[11]  Fahiem Bacchus,et al.  Beyond CNF: A Circuit-Based QBF Solver , 2009, SAT.

[12]  Oliver Kullmann,et al.  Theory and Applications of Satisfiability Testing - SAT 2009, 12th International Conference, SAT 2009, Swansea, UK, June 30 - July 3, 2009. Proceedings , 2009, SAT.

[13]  Hans Kleine Büning,et al.  Theory and Applications of Satisfiability Testing - SAT 2008, 11th International Conference, SAT 2008, Guangzhou, China, May 12-15, 2008. Proceedings , 2008, SAT.

[14]  Luca Pulina,et al.  Minimal Module Extraction from DL-Lite Ontologies Using QBF Solvers , 2009, IJCAI.

[15]  Armin Biere,et al.  Nenofex: Expanding NNF for QBF Solving , 2008, SAT.

[16]  Armando Tacchella,et al.  Challenges in the QBF Arena: the SAT'03 Evaluation of QBF Solvers , 2003, SAT.

[17]  Stefan Woltran,et al.  A solver for QBFs in negation normal form , 2009, Constraints.

[18]  Christoph Scholl,et al.  Exploiting structure in an AIG based QBF solver , 2009, 2009 Design, Automation & Test in Europe Conference & Exhibition.

[19]  Frank Wolter,et al.  Monodic fragments of first-order temporal logics: 2000-2001 A.D , 2001, LPAR.

[20]  Armin Biere,et al.  Efficiently Representing Existential Dependency Sets for Expansion-based QBF Solvers , 2009, Electron. Notes Theor. Comput. Sci..

[21]  Yannet Interian,et al.  A Model for Generating Random Quantified Boolean Formulas , 2005, IJCAI.

[22]  S. Malik,et al.  Validating the result of a quantified Boolean formula (QBF) solver: theory and practice , 2005, Proceedings of the ASP-DAC 2005. Asia and South Pacific Design Automation Conference, 2005..

[23]  Aaron Stump,et al.  Design and results of the 2nd annual satisfiability modulo theories competition (SMT-COMP 2006) , 2007, Formal Methods Syst. Des..

[24]  Luca Pulina,et al.  A Structural Approach to Reasoning with Quantified Boolean Formulas , 2009, IJCAI.

[25]  Armando Tacchella,et al.  Clause/Term Resolution and Learning in the Evaluation of Quantified Boolean Formulas , 2006, J. Artif. Intell. Res..