The Fourier collocation method for the Cahn-Hilliard equation☆
暂无分享,去创建一个
[1] D. Gottlieb,et al. Numerical analysis of spectral methods : theory and applications , 1977 .
[2] S. M. Choo,et al. Conservative nonlinear difference scheme for the Cahn-Hilliard equation—II , 1998 .
[3] D. Furihata,et al. Finite Difference Schemes for ∂u∂t=(∂∂x)αδGδu That Inherit Energy Conservation or Dissipation Property , 1999 .
[4] Charles M. Elliott,et al. Error estimates with smooth and nonsmooth data for a finite element method for the Cahn-Hilliard equation , 1992 .
[5] L. Segel,et al. Nonlinear aspects of the Cahn-Hilliard equation , 1984 .
[6] T. A. Zang,et al. Spectral methods for fluid dynamics , 1987 .
[7] Charles M. Elliott,et al. A second order splitting method for the Cahn-Hilliard equation , 1989 .
[8] J. E. Hilliard,et al. Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .
[9] C. M. Elliott,et al. Numerical Studies of the Cahn-Hilliard Equation for Phase Separation , 1987 .
[10] M. Marion,et al. Approximate inertial manifolds for the pattern formation Cahn-Hilliard equation , 1989 .
[11] C. M. Elliott,et al. A nonconforming finite-element method for the two-dimensional Cahn-Hilliard equation , 1989 .
[12] James S. Langer,et al. Theory of spinodal decomposition in alloys , 1971 .
[13] R. Nicolaides,et al. Numerical analysis of a continuum model of phase transition , 1991 .
[14] Peter W. Bates,et al. Slow motion for the Cahn-Hilliard equation in one space dimension , 1991 .
[15] Roger Temam,et al. Some Global Dynamical Properties of a Class of Pattern Formation Equations , 1989 .