The Fourier collocation method for the Cahn-Hilliard equation☆

Abstract In this paper, a Fourier collocation method for numerically solving Cahn-Hilliard equations with periodic boundary conditions is developed. We establish their semidiscrete and fully discrete schemes that inherit the energy dissipation property and mass conservation property from the associated continuous problem. We prove existence and uniqueness of the numerical solution and derive the optimal error bounds. We perform some numerical experiments which confirm our results.

[1]  D. Gottlieb,et al.  Numerical analysis of spectral methods : theory and applications , 1977 .

[2]  S. M. Choo,et al.  Conservative nonlinear difference scheme for the Cahn-Hilliard equation—II , 1998 .

[3]  D. Furihata,et al.  Finite Difference Schemes for ∂u∂t=(∂∂x)αδGδu That Inherit Energy Conservation or Dissipation Property , 1999 .

[4]  Charles M. Elliott,et al.  Error estimates with smooth and nonsmooth data for a finite element method for the Cahn-Hilliard equation , 1992 .

[5]  L. Segel,et al.  Nonlinear aspects of the Cahn-Hilliard equation , 1984 .

[6]  T. A. Zang,et al.  Spectral methods for fluid dynamics , 1987 .

[7]  Charles M. Elliott,et al.  A second order splitting method for the Cahn-Hilliard equation , 1989 .

[8]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[9]  C. M. Elliott,et al.  Numerical Studies of the Cahn-Hilliard Equation for Phase Separation , 1987 .

[10]  M. Marion,et al.  Approximate inertial manifolds for the pattern formation Cahn-Hilliard equation , 1989 .

[11]  C. M. Elliott,et al.  A nonconforming finite-element method for the two-dimensional Cahn-Hilliard equation , 1989 .

[12]  James S. Langer,et al.  Theory of spinodal decomposition in alloys , 1971 .

[13]  R. Nicolaides,et al.  Numerical analysis of a continuum model of phase transition , 1991 .

[14]  Peter W. Bates,et al.  Slow motion for the Cahn-Hilliard equation in one space dimension , 1991 .

[15]  Roger Temam,et al.  Some Global Dynamical Properties of a Class of Pattern Formation Equations , 1989 .