Synthesis, characterization and antimicrobial activities of Co(III) and Ni(II) complexes with 5-methyl-3-formylpyrazole-N(4)-dihexylthiosemicarbazone (HMPzNHex2): X-ray crystallography and DFT calculations of [Co(MPzNHex2)2]ClO4·1.5H2O (I) and [Ni(HMPzNHex2)2]Cl2·2H2O (II)

[1]  A. Slawin,et al.  Synthesis, characterization and antimicrobial activity of some nickel, cadmium and mercury complexes of 5-methyl pyrazole-3yl-N-(2′-methylthiophenyl) methyleneimine, (MPzOATA) ligand , 2018 .

[2]  R. Karvembu,et al.  Copper, nickel and zinc complexes of 3-acetyl coumarin thiosemicarbazone: Synthesis, characterization and in vitro evaluation of cytotoxicity and DNA/protein binding properties , 2017 .

[3]  Ashish Kumar,et al.  Co(II), Ni(II), Cu(II) and Zn(II) complexes of acenaphthoquinone 3-(4-benzylpiperidyl)thiosemicarbazone: Synthesis, structural, electrochemical and antibacterial studies , 2017 .

[4]  Kelsey R Webb,et al.  Copper complexes containing thiosemicarbazones derived from 6-nitropiperonal: Antimicrobial and biophysical properties. , 2017, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[5]  T. Yousef,et al.  Synthesis, structural, optical band gap and biological studies on iron (III), nickel (II), zinc (II) and mercury (II) complexes of benzyl α-monoxime pyridyl thiosemicarbazone , 2017 .

[6]  D. S. Arora,et al.  Synthesis of 5-nitro-salicylaldehyde-N-substituted thiosemicarbazonates of copper(II): Molecular structures, spectroscopy, ESI-mass studies and antimicrobial activity , 2017 .

[7]  T. Storr,et al.  Cobalt(III) complexes with 2-acetylpyridine-derived Schiff bases: Studies investigating ligand release upon reduction , 2017 .

[8]  F. Michaud,et al.  Synthesis, spectroscopy, crystal structure and DFT studies of cobalt(III) complexes featuring dimethylglyoximate and aniline or p-bromoaniline ligands , 2017 .

[9]  E. Türkkan,et al.  Anticancer, antimicrobial, spectral, voltammetric and DFT studies with Cu(II) complexes of 2-hydroxy-5-methoxyacetophenone thiosemicarbazone and its N(4)- substituted derivatives , 2017 .

[10]  Seyed Abolfazl Hosseini‐Yazdi,et al.  X-ray crystal structural and spectral studies of copper(II) and nickel(II) complexes of two asymmetric bis(thiosemicarbazone) ligands and the investigation of relationship between the N(4)-substituent and the electrochemical behavior , 2017 .

[11]  R. Prabhakaran,et al.  DNA(CT), protein(BSA) binding studies, anti-oxidant and cytotoxicity studies of new binuclear Ni(II) complexes containing 4(N)-substituted thiosemicarbazones , 2016 .

[12]  R. Karvembu,et al.  Isatin based thiosemicarbazone derivatives as potential bioactive agents: Anti-oxidant and molecular docking studies , 2016 .

[13]  P. Viswanathamurthi,et al.  Synthesis, crystal structure and biological evaluation of Ni(II) complexes containing 4-chromone-N(4)-substituted thiosemicarbazone ligands , 2016 .

[14]  V. Revankar,et al.  Transition metal complexes of thiosemicarbazone: Synthesis, structures and invitro antimicrobial studies , 2015 .

[15]  Nicole S. Bryce,et al.  Cobalt(III) Chaperone Complexes of Curcumin: Photoreduction, Cellular Accumulation and Light-Selective Toxicity towards Tumour Cells. , 2015, Chemistry.

[16]  T. Roșu,et al.  Synthesis, characterization, crystal structure and antioxidant activity of Ni(II) and Cu(II) complexes with 2-formilpyridine N(4)-phenylthiosemicarbazone , 2015 .

[17]  M. Kurup,et al.  Synthesis and spectral characterization of mono- and binuclear copper(II) complexes derived from 2-benzoylpyridine-N⁴-methyl-3-thiosemicarbazone: crystal structure of a novel sulfur bridged copper(II) box-dimer. , 2015, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[18]  G. Sheldrick Crystal structure refinement with SHELXL , 2015, Acta crystallographica. Section C, Structural chemistry.

[19]  P. Viswanathamurthi,et al.  Synthesis, structure and in vitro biological activity of pyridoxal N(4)-substituted thiosemicarbazone cobalt(III) complexes , 2014 .

[20]  W. Wong,et al.  Nickel(II) complexes of polyhydroxybenzaldehyde N4-thiosemicarbazones: synthesis, structural characterization and antimicrobial activities , 2014, Transition Metal Chemistry.

[21]  A. Slawin,et al.  Synthesis, characterization, X-ray crystallography and antimicrobial activities of new Co(III) and Cu(II) complexes with a pyrazole based Schiff base ligand , 2014 .

[22]  A. Slawin,et al.  Synthesis, characterization, X-ray crystallography, and antimicrobial activities of Ni(II) and Cu(II) complexes with a salicylaldehyde-based thiosemicarbazone ligand , 2014 .

[23]  Nicole S. Bryce,et al.  Delivery and release of curcumin by a hypoxia-activated cobalt chaperone: a XANES and FLIM study , 2013 .

[24]  Joe J. Harrison,et al.  Antimicrobial activity of metals: mechanisms, molecular targets and applications , 2013, Nature Reviews Microbiology.

[25]  Nicole S. Bryce,et al.  Dual targeting of hypoxic and acidic tumor environments with a cobalt(III) chaperone complex. , 2012, Journal of medicinal chemistry.

[26]  V. Kravtsov,et al.  Synthesis and crystal structure of Co(III) dioximates with the complex anion [SbF6]− , 2012, Russian Journal of Coordination Chemistry.

[27]  P. Poornima,et al.  One pot synthesis of structurally different mono and dimeric Ni(II) thiosemicarbazone complexes and N-arylation on a coordinated ligand: a comparative biological study. , 2012, Dalton transactions.

[28]  N. Dharmaraj,et al.  Copper(I) and nickel(II) complexes with 1:1 vs. 1:2 coordination of ferrocenyl hydrazone ligands: do the geometry and composition of complexes affect DNA binding/cleavage, protein binding, antioxidant and cytotoxic activities? , 2012, Dalton transactions.

[29]  K. Senthilkumar,et al.  Copper ion mediated selective cleavage of C-S bond in ferrocenylthiosemicarbazone forming mixed geometrical [(PPh3)Cu(μ-S)2Cu(PPh3)2] having Cu2S2 core: toward a new avenue in copper-sulfur chemistry. , 2012, Inorganic chemistry.

[30]  U. Ghosh,et al.  Synthesis, structural characterisation and cytotoxicity of new iron(III) complexes with pyrazolyl thiosemicabazones , 2012 .

[31]  Vikas Kumar,et al.  Synthesis and antibacterial evaluation of series of novel tri-substituted-s-triazine derivatives , 2011, Medicinal Chemistry Research.

[32]  Nicole S. Bryce,et al.  Visualising the hypoxia selectivity of cobalt(III) prodrugs , 2011 .

[33]  P. Viswanathamurthi,et al.  Can geometry control the coordination behaviour of 2-hydroxy-1-naphthaldehyde-N(4)-phenylthiosemicarbazone? A study towards its origin , 2011 .

[34]  A. Slawin,et al.  Automated chemical crystallography. , 2010, Journal of the American Chemical Society.

[35]  J. Klimeš,et al.  Development of an LC–MS/MS method for analysis of interconvertible Z/E isomers of the novel anticancer agent, Bp4eT , 2010, Analytical and bioanalytical chemistry.

[36]  R. Cao,et al.  Complexes of 2-acetyl-gamma-butyrolactone and 2-furancarbaldehyde thiosemicarbazones: antibacterial and antifungal activity. , 2009, Journal of inorganic biochemistry.

[37]  S. Çete,et al.  Cr(III), Fe(III) and Co(III) complexes of tetradentate (ONNO) Schiff base ligands: synthesis, characterization, properties and biological activity. , 2008, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[38]  Ş. Demirayak,et al.  Synthesis, crystal structure and biological activity of 1-(1H-benzoimidazol-2-yl)-ethanone thiosemicarbazone and its cobalt complex , 2008 .

[39]  Dietrich H. Nies,et al.  Glutathione and Transition-Metal Homeostasis in Escherichia coli , 2008, Journal of bacteriology.

[40]  Noel M. O'Boyle,et al.  cclib: A library for package‐independent computational chemistry algorithms , 2008, J. Comput. Chem..

[41]  M. Hall,et al.  Bioreductive activation and drug chaperoning in cobalt pharmaceuticals. , 2007, Dalton transactions.

[42]  A. Mangrich,et al.  Coordination to copper(II) strongly enhances the in vitro antimicrobial activity of pyridine-derived N(4)-tolyl thiosemicarbazones , 2007 .

[43]  Gervais Chapuis,et al.  SUPERFLIP– a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions , 2007 .

[44]  M. Devereux,et al.  Synthesis, X-ray crystal structures and biomimetic and anticancer activities of novel copper(II)benzoate complexes incorporating 2-(4'-thiazolyl)benzimidazole (thiabendazole), 2-(2-pyridyl)benzimidazole and 1,10-phenanthroline as chelating nitrogen donor ligands. , 2007, Journal of inorganic biochemistry.

[45]  T. Hambley,et al.  Studies of a cobalt(III) complex of the MMP inhibitor marimastat: a potential hypoxia-activated prodrug. , 2007, Chemistry.

[46]  E. Suresh,et al.  Structural, antimicrobial and spectral studies of copper(II) complexes of 2-benzoylpyridine N(4)-phenyl thiosemicarbazone , 2006 .

[47]  R. Butcher,et al.  Synthesis and spectroscopic characterisation of new nickel (II) complexes with 5-methyl-3-formylpyrazole-3-piperidinylthiosemicarbazone (HMPz3Pi): X-ray structures of HMPz3Pi and [Ni(HMPz3Pi)2]Cl2 · 2H2O with indication for unusual rotation about the azomethine double bond of the free ligand on comp , 2005 .

[48]  Maria Cristina Burla,et al.  SIR2004: an improved tool for crystal structure determination and refinement , 2005 .

[49]  S. Pinelli,et al.  Synthesis, characterization and biological activity of copper complexes with pyridoxal thiosemicarbazone derivatives. X-ray crystal structure of three dimeric complexes. , 2004, Journal of inorganic biochemistry.

[50]  Jim A. Thomas,et al.  Kinetically inert transition metal complexes that reversibly bind to DNA. , 2003, Chemical Society reviews.

[51]  R. Butcher,et al.  Synthesis and spectroscopic characterisation of cobalt(III) and nickel(II) complexes with 5-methyl-3-formylpyrazole-N(4)-dibutylthiosemicarbazone (HMPzNBu2): X-ray crystallography of [Co(MPzNBu2)2]NO3·H2O (I) and [Ni(HMPzNBu2)2](ClO4)2 (II) , 2003 .

[52]  M. C. Rodríguez-Argüelles,et al.  Preparation, characterization and X-ray structures of 1-methylisatin 3-thiosemicarbazone copper, nickel and cobalt complexes , 2002 .

[53]  A. Castiñeiras,et al.  Spectral studies and X-ray crystal structures of three nickel(II) complexes of 2-pyridineformamide 3-piperidylthiosemicarbazone , 2002 .

[54]  T. Rojo,et al.  Biological activity of complexes derived from thiophene-2-carbaldehyde thiosemicarbazone. Crystal structure of [Ni(C(6)H(6)N(3)S(2))(2)]. , 2001, Journal of inorganic biochemistry.

[55]  A. H. Mirza,et al.  Synthesis, characterization, antifungal properties and X-ray crystal structures of five- and six-coordinate copper(II) complexes of the 6-methyl-2-formylpyridine4N-dimethylthiosemicarbazone , 2001 .

[56]  P. Lunghi,et al.  Synthesis, characterisation, X-ray structure and biological activity of three new 5-formyluracil thiosemicarbazone complexes. , 2001, Journal of inorganic biochemistry.

[57]  F. V. Meurs,et al.  Spectral and structural studies of iron(III), cobalt(II,III) and nickel(II) complexes of 2-pyridineformamide N(4)-methylthiosemicarbazone , 1999 .

[58]  M. Green,et al.  Structural and spectral studies of copper(II) and nickel(II) complexes of pyruvaldehyde mixed bis{N(4)-substituted thiosemicarbazones} , 1999 .

[59]  P. Bindu,et al.  Epr, cyclic voltammetric and biological activities of copper(II) complexes of salicylaldehyde N(4)-substituted thiosemicarbazone and heterocyclic bases , 1998 .

[60]  J. Ko,et al.  Synthesis and Characterization of Aluminum and Gallium Complexes of Heterocyclic Carboxaldehyde Thiosemicarbazones. Single-Crystal Structure of [(MeAl){NC4H3CHNNC(S)NiC3H7}(AlMe2)]2 and (GaMe2)2[SC4H3CHNNC(S)NPh] , 1997 .

[61]  S. Peng,et al.  Steric Control of the Coordination Mode of the Salicylaldehyde Thiosemicarbazone Ligand. Syntheses, Structures, and Redox Properties of Ruthenium and Osmium Complexes , 1997 .

[62]  H. Gray,et al.  Spectroscopy and Electrochemistry of Cobalt(III) Schiff Base Complexes , 1997 .

[63]  W. Youngs,et al.  REACTIVITY OF MO-OT TERMINAL BONDS TOWARD SUBSTRATES HAVING SIMULTANEOUS PROTON- AND ELECTRON-DONOR PROPERTIES: A RUDIMENTARY FUNCTIONAL MODEL FOR OXO TRANSFERASE MOLYBDENUM ENZYMES , 1997 .

[64]  Frank E. Smith,et al.  The preparation, characterization, crystal structure and biological activities of some copper(II) complexes of the 2-benzoylpyridine Schiff bases of S-methyl- and S-benzyldithiocarbazate , 1996 .

[65]  R. Crabtree,et al.  Deprotonated thioamides as thiolate S-donor ligands with a high tendency to avoid M-S-M bridge formation: crystal and molecular structure of bis(2-hydroxy-5-methylacetophenone N,N-dimethylthiosemicarbazonato)dinickel , 1993 .

[66]  Usha,et al.  Cobalt(II) Complexes OP Some Semicarbazones and Thiosemicarbazones , 1993 .

[67]  J. Scovill A FACILE SYNTHESIS OF THIOSEMICARBAZIDESAND THIOSEMICARBAZONES BY THETRANSAMINATION OF 4-METHYL-4-PHENYL-3-THIOSEMICARBAZIDE , 1991 .

[68]  D. L. Klayman,et al.  2-Acetylpyridine thiosemicarbazones. 4. Complexes with transition metals as antimalarial and antileukemic agents. , 1982, Journal of medicinal chemistry.

[69]  W. Geary The use of conductivity measurements in organic solvents for the characterisation of coordination compounds , 1971 .

[70]  J. Ferraro,et al.  Transition Metal(II) Complexes of the Azines , 1969 .

[71]  A. Bauer,et al.  Antibiotic susceptibility testing by a standardized single disk method. , 1966, American journal of clinical pathology.

[72]  E. Taeger,et al.  Zur Kenntnis der Trithiokohlensäure. VII. Über die Reaktion von aromatischen und heterocyclischen Trithiokohlensäure‐di‐estern mit primären und sekundären Aminen, Hydrazin und Phenylhydrazin , 1962 .

[73]  A. E. Liberta,et al.  Antifungal and antitumor activity of heterocyclic thiosemicarbazones and their metal complexes: current status , 2005, Biometals.

[74]  T. M. Ivanova,et al.  Synthesis and Physicochemical Properties of d- and f-Metal Complexes with Alloxan , 2004 .

[75]  N. Raman Synthesis, Structural Characterization, Redox and Antimicrobial Studies of Schiff Base Copper(II), Nickel(II), Cobalt(II), Manganese(ii), Zinc(II) and Oxovanadium(ii) Complexes derived from benzil and 2-Aminobenzyl Alcohol , 2002 .

[76]  C. Supuran,et al.  Antibacterial Co(II) and Ni(II) Complexes of N-(2-Furanylmethylene)-2-Aminothiadiazole and Role of SO42−, NO3−, C2O42− and CH3CO2− anions on Biological Properties , 2002, Metal-based drugs.

[77]  Duan Chun-ying,et al.  Structural dependence of π–π interactions in dithiocarbazato and thiosemicarbazato nickel complexes , 2000 .

[78]  P. Lunghi,et al.  Synthesis, spectroscopic characterization and biological properties of new natural aldehydes thiosemicarbazones. , 2000, Bioorganic & medicinal chemistry.

[79]  A. Rauf,et al.  Pharmacological Role of Anions (Sulphate, Nitrate, Oxalate and Acetate) on the Antibacterial Activity of Cobalt(II), Copper(II) and Nickel(II) Complexes With Nicotinoylhydrazine-Derived ONO, NNO and SNO Ligands , 1996, Metal-based drugs.

[80]  Nibedita Mukherjee,et al.  Synthesis, characterisation and coordinating properties of a new pyrazole-derived thiosemicarbazone, a potential antiviral agent: Co(III), Ni(II) and Cu(II) complexes of neutral and deprotonated 5(3)-methylpyrazole-3(5)-aldehydothiosemicarbazone , 1984 .

[81]  R. Aggarwal,et al.  Picolinoyl hydrazide complexes of some first row transition metal ions , 1978 .

[82]  A. Sartorelli,et al.  Characterization of the biochemical mechanism of action of alpha-(N)-heterocyclic carboxaldehyde thiosemicarbazones. , 1976, Advances in enzyme regulation.

[83]  B. Bosnich An interpretation of the circular dichroism and electronic spectra of salicylaldimine complexes of square-coplanar diamagnetic nickel(II) , 1968 .

[84]  M. Dewar,et al.  29. Sulphanilamides of some aminopyrazoles, and a note on the application of p-phthalimidobenzenesulphonyl chloride to the synthesis of sulphanilamides , 1945 .