Knowledge-Based Linear Programming

We introduce a class of linear programs with constraints in the form of implications. Such linear programs arise in support vector machine classification, where in addition to explicit datasets to be classified, prior knowledge such as expert experience in the form of logical implications are imposed on the classifier. The overall problem can be viewed either as a semi-infinite linear program or as a linear program with equilibrium constraints which, in either case, can be solved by an equivalent simple linear program under mild assumptions.

[1]  O. Mangasarian,et al.  NONLINEAR PERTURBATION OF LINEAR PROGRAMS , 1979 .

[2]  Bethany L. Nicholson,et al.  Mathematical Programs with Equilibrium Constraints , 2021, Pyomo — Optimization Modeling in Python.

[3]  Glenn Fung,et al.  Knowledge-Based Nonlinear Kernel Classifiers , 2003, COLT.

[4]  Olvi L. Mangasarian,et al.  Generalized Support Vector Machines , 1998 .

[5]  Alexander J. Smola,et al.  Advances in Large Margin Classifiers , 2000 .

[6]  Olvi L. Mangasarian,et al.  Set Containment Characterization , 2002, J. Glob. Optim..

[7]  Vladimir Vapnik,et al.  The Nature of Statistical Learning , 1995 .

[8]  Tomaso A. Poggio,et al.  Regularization Networks and Support Vector Machines , 2000, Adv. Comput. Math..

[9]  Paul S. Bradley,et al.  Feature Selection via Concave Minimization and Support Vector Machines , 1998, ICML.

[10]  Jude W. Shavlik,et al.  Knowledge-Based Kernel Approximation , 2004, J. Mach. Learn. Res..

[11]  Alexander J. Smola,et al.  Learning with kernels , 1998 .

[12]  Olvi L. Mangasarian,et al.  Nonlinear Programming , 1969 .

[13]  Bernhard Schölkopf,et al.  Learning with kernels , 2001 .

[14]  M. A. López-Cerdá,et al.  Linear Semi-Infinite Optimization , 1998 .

[15]  Glenn Fung,et al.  Knowledge-Based Support Vector Machine Classifiers , 2002, NIPS.

[16]  Nello Cristianini,et al.  An introduction to Support Vector Machines , 2000 .

[17]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[18]  Robert A. Lordo,et al.  Learning from Data: Concepts, Theory, and Methods , 2001, Technometrics.

[19]  Olvi L. Mangasarian,et al.  Arbitrary-norm separating plane , 1999, Oper. Res. Lett..