Fast Exact Euclidean Distance (FEED): A New Class of Adaptable Distance Transforms

A new unique class of foldable distance transforms of digital images (DT) is introduced, baptized: Fast exact euclidean distance (FEED) transforms. FEED class algorithms calculate the DT starting-directly from the definition or rather its inverse. The principle of FEED class algorithms is introduced, followed by strategies for their efficient implementation. It is shown that FEED class algorithms unite properties of ordered propagation, raster scanning, and independent scanning DT. Moreover, FEED class algorithms shown to have a unique property: they can be tailored to the images under investigation. Benchmarks are conducted on both the Fabbri et al. data set and on a newly developed data set. Three baseline, three approximate, and three state-of-the-art DT algorithms were included, in addition to two implementations of FEED class algorithms. It illustrates that FEED class algorithms i) provide truly exact Euclidean DT; ii) do no suffer from disconnected Voronoi tiles, which is a unique feature for non-parallel but fast DT; iii) outperform any other approximate and exact Euclidean DT with its time complexity O(N), even after their optimization; and iv) are unequaled in that they can be adapted to the characteristics of the image class at hand.

[1]  Jayanta Mukherjee On approximating Euclidean metrics by weighted t-cost distances in arbitrary dimension , 2011, Pattern Recognit. Lett..

[2]  Laurent D. Cohen,et al.  Geodesic Methods in Computer Vision and Graphics , 2010, Found. Trends Comput. Graph. Vis..

[3]  Milan Sonka,et al.  Novel indices for left-ventricular dyssynchrony characterization based on highly automated segmentation from real-time 3-d echocardiography. , 2013, Ultrasound in medicine & biology.

[4]  Enrique Coiras,et al.  Hexadecagonal region growing , 1998, Pattern Recognit. Lett..

[5]  David Coeurjolly,et al.  Optimal Separable Algorithms to Compute the Reverse Euclidean Distance Transformation and Discrete Medial Axis in Arbitrary Dimension , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Egon L. van den Broek,et al.  Modeling human color categorization , 2008, Pattern Recognit. Lett..

[7]  Raúl E. Sequeira,et al.  Discrete Voronoi Diagrams and the SKIZ Operator: A Dynamic Algorithm , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Benoit M. Macq,et al.  Fast Euclidean Distance Transformation by Propagation Using Multiple Neighborhoods , 1999, Comput. Vis. Image Underst..

[9]  Kenneth Moreland,et al.  A Survey of Visualization Pipelines , 2013, IEEE Transactions on Visualization and Computer Graphics.

[10]  Olivier Cuisenaire Locally adaptable mathematical morphology using distance transformations , 2006, Pattern Recognit..

[11]  Tomio Hirata,et al.  A Unified Linear-Time Algorithm for Computing Distance Maps , 1996, Inf. Process. Lett..

[12]  Yves Lucet New sequential exact Euclidean distance transform algorithms based on convex analysis , 2009, Image Vis. Comput..

[13]  P. Danielsson Euclidean distance mapping , 1980 .

[14]  András Hajdu,et al.  Approximating non-metrical Minkowski distances in 2D , 2008, Pattern Recognit. Lett..

[15]  Theo E. Schouten,et al.  Three-dimensional fast exact Euclidean distance (3D-FEED) maps , 2006, Electronic Imaging.

[16]  Weiguang Guan,et al.  A List-Processing Approach to Compute Voronoi Diagrams and the Euclidean Distance Transform , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  L. Vincent Graphs and mathematical morphology , 1989 .

[18]  Gunilla Borgefors,et al.  Digital distance functions on three-dimensional grids , 2011, Theor. Comput. Sci..

[19]  Wim H. Hesselink,et al.  A General Algorithm for Computing Distance Transforms in Linear Time , 2000, ISMM.

[20]  Frank Y. Shih,et al.  The efficient algorithms for achieving Euclidean distance transformation , 2004, IEEE Transactions on Image Processing.

[21]  Azriel Rosenfeld,et al.  Sequential Operations in Digital Picture Processing , 1966, JACM.

[22]  Th.E. Schouten,et al.  Weighted Distance Mapping (WDM) , 2005 .

[23]  Egon L. van den Broek,et al.  Distance transforms: Academics versus industry , 2011 .

[24]  Q. Ye The signed Euclidean distance transform and its applications , 1988, [1988 Proceedings] 9th International Conference on Pattern Recognition.

[25]  András Hajdu,et al.  Approximating the Euclidean distance using non-periodic neighbourhood sequences , 2004, Discret. Math..

[26]  Franz Aurenhammer,et al.  Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.

[27]  Luciano da Fontoura Costa,et al.  2D Euclidean distance transform algorithms: A comparative survey , 2008, CSUR.

[28]  Roger D. Chamberlain,et al.  Optimization of Application-Specific Memories , 2014, IEEE Computer Architecture Letters.

[29]  A. ROSENFELD,et al.  Distance functions on digital pictures , 1968, Pattern Recognit..

[30]  Calvin R. Maurer,et al.  A Linear Time Algorithm for Computing Exact Euclidean Distance Transforms of Binary Images in Arbitrary Dimensions , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[31]  Jakob Andreas Bærentzen,et al.  3D distance fields: a survey of techniques and applications , 2006, IEEE Transactions on Visualization and Computer Graphics.

[32]  Tomio Hirata,et al.  A systolic algorithm for Euclidean distance transform , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[33]  Frank Y. Shih,et al.  Fast Euclidean distance transformation in two scans using a 3 × 3 neighborhood , 2004, Comput. Vis. Image Underst..

[34]  Seah Hock Soon,et al.  GPU-Accelerated Real-Time Tracking of Full-Body Motion With Multi-Layer Search , 2013, IEEE Transactions on Multimedia.

[35]  Olaf Kübler,et al.  Voronoi tessellation of points with integer coordinates: Time-efficient implementation and online edge-list generation , 1995, Pattern Recognit..

[36]  Gunilla Borgefors,et al.  Distance transformations in digital images , 1986, Comput. Vis. Graph. Image Process..

[37]  Egon L. van den Broek,et al.  Fast exact Euclidean distance (FEED) transformation , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[38]  G. Borgefors Distance transformations in arbitrary dimensions , 1984 .

[39]  Egon L. van den Broek,et al.  Fast multi-class distance transforms for video surveillance , 2008, Electronic Imaging.

[40]  Xinjian Chen,et al.  Linear Time Algorithms for Exact Distance Transform , 2011, Journal of Mathematical Imaging and Vision.

[41]  Zenon Kulpa,et al.  Algorithms for circular propagation in discrete images , 1983, Comput. Vis. Graph. Image Process..

[42]  Jie Gao,et al.  Geometric algorithms for sensor networks , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[43]  Rocio Gonzalez-Diaz,et al.  Discrete Geometry for Computer Imagery , 2013, Lecture Notes in Computer Science.