Fast Exact Euclidean Distance (FEED): A New Class of Adaptable Distance Transforms
暂无分享,去创建一个
[1] Jayanta Mukherjee. On approximating Euclidean metrics by weighted t-cost distances in arbitrary dimension , 2011, Pattern Recognit. Lett..
[2] Laurent D. Cohen,et al. Geodesic Methods in Computer Vision and Graphics , 2010, Found. Trends Comput. Graph. Vis..
[3] Milan Sonka,et al. Novel indices for left-ventricular dyssynchrony characterization based on highly automated segmentation from real-time 3-d echocardiography. , 2013, Ultrasound in medicine & biology.
[4] Enrique Coiras,et al. Hexadecagonal region growing , 1998, Pattern Recognit. Lett..
[5] David Coeurjolly,et al. Optimal Separable Algorithms to Compute the Reverse Euclidean Distance Transformation and Discrete Medial Axis in Arbitrary Dimension , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[6] Egon L. van den Broek,et al. Modeling human color categorization , 2008, Pattern Recognit. Lett..
[7] Raúl E. Sequeira,et al. Discrete Voronoi Diagrams and the SKIZ Operator: A Dynamic Algorithm , 1997, IEEE Trans. Pattern Anal. Mach. Intell..
[8] Benoit M. Macq,et al. Fast Euclidean Distance Transformation by Propagation Using Multiple Neighborhoods , 1999, Comput. Vis. Image Underst..
[9] Kenneth Moreland,et al. A Survey of Visualization Pipelines , 2013, IEEE Transactions on Visualization and Computer Graphics.
[10] Olivier Cuisenaire. Locally adaptable mathematical morphology using distance transformations , 2006, Pattern Recognit..
[11] Tomio Hirata,et al. A Unified Linear-Time Algorithm for Computing Distance Maps , 1996, Inf. Process. Lett..
[12] Yves Lucet. New sequential exact Euclidean distance transform algorithms based on convex analysis , 2009, Image Vis. Comput..
[13] P. Danielsson. Euclidean distance mapping , 1980 .
[14] András Hajdu,et al. Approximating non-metrical Minkowski distances in 2D , 2008, Pattern Recognit. Lett..
[15] Theo E. Schouten,et al. Three-dimensional fast exact Euclidean distance (3D-FEED) maps , 2006, Electronic Imaging.
[16] Weiguang Guan,et al. A List-Processing Approach to Compute Voronoi Diagrams and the Euclidean Distance Transform , 1998, IEEE Trans. Pattern Anal. Mach. Intell..
[17] L. Vincent. Graphs and mathematical morphology , 1989 .
[18] Gunilla Borgefors,et al. Digital distance functions on three-dimensional grids , 2011, Theor. Comput. Sci..
[19] Wim H. Hesselink,et al. A General Algorithm for Computing Distance Transforms in Linear Time , 2000, ISMM.
[20] Frank Y. Shih,et al. The efficient algorithms for achieving Euclidean distance transformation , 2004, IEEE Transactions on Image Processing.
[21] Azriel Rosenfeld,et al. Sequential Operations in Digital Picture Processing , 1966, JACM.
[22] Th.E. Schouten,et al. Weighted Distance Mapping (WDM) , 2005 .
[23] Egon L. van den Broek,et al. Distance transforms: Academics versus industry , 2011 .
[24] Q. Ye. The signed Euclidean distance transform and its applications , 1988, [1988 Proceedings] 9th International Conference on Pattern Recognition.
[25] András Hajdu,et al. Approximating the Euclidean distance using non-periodic neighbourhood sequences , 2004, Discret. Math..
[26] Franz Aurenhammer,et al. Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.
[27] Luciano da Fontoura Costa,et al. 2D Euclidean distance transform algorithms: A comparative survey , 2008, CSUR.
[28] Roger D. Chamberlain,et al. Optimization of Application-Specific Memories , 2014, IEEE Computer Architecture Letters.
[29] A. ROSENFELD,et al. Distance functions on digital pictures , 1968, Pattern Recognit..
[30] Calvin R. Maurer,et al. A Linear Time Algorithm for Computing Exact Euclidean Distance Transforms of Binary Images in Arbitrary Dimensions , 2003, IEEE Trans. Pattern Anal. Mach. Intell..
[31] Jakob Andreas Bærentzen,et al. 3D distance fields: a survey of techniques and applications , 2006, IEEE Transactions on Visualization and Computer Graphics.
[32] Tomio Hirata,et al. A systolic algorithm for Euclidean distance transform , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[33] Frank Y. Shih,et al. Fast Euclidean distance transformation in two scans using a 3 × 3 neighborhood , 2004, Comput. Vis. Image Underst..
[34] Seah Hock Soon,et al. GPU-Accelerated Real-Time Tracking of Full-Body Motion With Multi-Layer Search , 2013, IEEE Transactions on Multimedia.
[35] Olaf Kübler,et al. Voronoi tessellation of points with integer coordinates: Time-efficient implementation and online edge-list generation , 1995, Pattern Recognit..
[36] Gunilla Borgefors,et al. Distance transformations in digital images , 1986, Comput. Vis. Graph. Image Process..
[37] Egon L. van den Broek,et al. Fast exact Euclidean distance (FEED) transformation , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..
[38] G. Borgefors. Distance transformations in arbitrary dimensions , 1984 .
[39] Egon L. van den Broek,et al. Fast multi-class distance transforms for video surveillance , 2008, Electronic Imaging.
[40] Xinjian Chen,et al. Linear Time Algorithms for Exact Distance Transform , 2011, Journal of Mathematical Imaging and Vision.
[41] Zenon Kulpa,et al. Algorithms for circular propagation in discrete images , 1983, Comput. Vis. Graph. Image Process..
[42] Jie Gao,et al. Geometric algorithms for sensor networks , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[43] Rocio Gonzalez-Diaz,et al. Discrete Geometry for Computer Imagery , 2013, Lecture Notes in Computer Science.