Hybrid Hypercomputing: Towards a Unification of Quantum and Classical Computation

We investigate the computational power and unified resource use of hybrid quantum-classical computations, such as teleportation and measurement-based computing. We introduce a physically causal and local graphical calculus for quantum information theory, which enables high-level intuitive reasoning about quantum information processes. The graphical calculus defines a local information flow in a computation which satisfies conditions for physical causality. We show how quantum and classical processing units can now be formally integrated, and give an analysis of the joint resources used in a typical measurement-based computation. Finally, we discuss how this picture may be used to give a high-level unified model for hybrid quantum computing.

[1]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[2]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[3]  Gilles Brassard,et al.  Strengths and Weaknesses of Quantum Computing , 1997, SIAM J. Comput..

[4]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[5]  Debbie W. Leung,et al.  Unified derivations of measurement-based schemes for quantum computation , 2005 .

[6]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[7]  Developing the Deutsch?Hayden approach to quantum mechanics , 2006, quant-ph/0609085.

[8]  S. Braunstein,et al.  Impossibility of deleting an unknown quantum state. , 1999, Nature.

[9]  Bart Jacobs,et al.  Quantum Logic in Dagger Kernel Categories , 2009, QPL@MFPS.

[10]  Elham Kashefi,et al.  The One Way to Quantum Computation , 2006, ICALP.

[11]  Alberto Leporati,et al.  Diagrams of States in Quantum Information: an Illustrative Tutorial , 2010, Int. J. Unconv. Comput..

[12]  E. Kashefi,et al.  Generalized flow and determinism in measurement-based quantum computation , 2007, quant-ph/0702212.

[13]  H. Briegel,et al.  Measurement-based quantum computation on cluster states , 2003, quant-ph/0301052.

[14]  Umesh V. Vazirani,et al.  Quantum Complexity Theory , 1997, SIAM J. Comput..

[15]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[16]  D. Gottesman The Heisenberg Representation of Quantum Computers , 1998, quant-ph/9807006.

[17]  David Deutsch,et al.  Information flow in entangled quantum systems , 2000, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[18]  N. Gisin,et al.  Quantum cryptography , 1998 .

[19]  D. Abrams,et al.  Simulation of Many-Body Fermi Systems on a Universal Quantum Computer , 1997, quant-ph/9703054.

[20]  B. Coecke Kindergarten Quantum Mechanics , 2005, quant-ph/0510032.

[21]  Samson Abramsky,et al.  A categorical semantics of quantum protocols , 2004, Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004..

[22]  K. Birgitta Whaley,et al.  Quantum random-walk search algorithm , 2002, quant-ph/0210064.

[23]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.