Direct Observation of Charge Transfer in Solid Electrolyte for Electrochemical Metallization Memory

X-ray absorption spectroscopy study on an electrochemical metallization cell of GeS(x) :Ag shows clear experimental evidence of chemical ionization of the active metal atoms (Ag) and consequent transfer of charge to the electrolyte (GeS(x) ). The valence electron density and its change upon the Ag intercalation are depicted schematically as transparent waves on the Ge-S bond structure in amorphous GeS(x) .

[1]  S. Menzel,et al.  Simulation of multilevel switching in electrochemical metallization memory cells , 2012 .

[2]  R. Dittmann,et al.  Origin of the Ultra‐nonlinear Switching Kinetics in Oxide‐Based Resistive Switches , 2011 .

[3]  M. Kozicki,et al.  Electrochemical metallization memories—fundamentals, applications, prospects , 2011, Nanotechnology.

[4]  B Kahng,et al.  Scaling theory for unipolar resistance switching. , 2010, Physical review letters.

[5]  Chakravarthy Gopalan,et al.  Demonstration of Conductive Bridging Random Access Memory (CBRAM) in Logic CMOS Process , 2010, 2010 IEEE International Memory Workshop.

[6]  K. Asakura,et al.  Ag L(3)-edge X-ray absorption near-edge structure of 4d(10) (Ag(+)) compounds: origin of the edge peak and its chemical relevance. , 2010, The journal of physical chemistry. A.

[7]  M. Ferenets,et al.  Thin Solid Films , 2010 .

[8]  Michael Kund,et al.  Selection of Optimized Materials for CBRAM Based on HT-XRD and Electrical Test Results , 2009 .

[9]  R. Bruchhaus,et al.  Investigation of the Reliability Behavior of Conductive-Bridging Memory Cells , 2009, IEEE Electron Device Letters.

[10]  R. Waser,et al.  Nanoionics-based resistive switching memories. , 2007, Nature materials.

[11]  M. Zwijnenburg,et al.  A computational study into the (tetrahedral) distortion of TX2 α-quartz materials : The effect of changing the chemical composition away from SiO2 , 2006 .

[12]  T. Baumann,et al.  Monolithic, high surface area, three-dimensional GeO2 nanostructures , 2006 .

[13]  S. Harmer,et al.  SULFUR K-EDGE XANES SPECTROSCOPY: CHEMICAL STATE AND CONTENT OF SULFUR IN SILICATE GLASSES , 2005 .

[14]  Maria Mitkova,et al.  Thermal and photodiffusion of Ag in S-rich Ge-S amorphous films , 2004 .

[15]  K. Morinaga,et al.  Compositional variation in the structure of Ge-S glasses , 2001 .

[16]  J. Kawamura,et al.  Ionic conductivity of Agx(GeSe3)1−x (0≤x≤0.571) glasses , 1999 .

[17]  M. Jansen,et al.  Electronic Structure of Silver Oxides Investigated by AgL XANES Spectroscopy , 1999 .

[18]  A. Ankudinov,et al.  REAL-SPACE MULTIPLE-SCATTERING CALCULATION AND INTERPRETATION OF X-RAY-ABSORPTION NEAR-EDGE STRUCTURE , 1998 .

[19]  G. Ozin,et al.  Synthesis and Crystal Structure of δ-GeS2 , the First Germanium Sulfide with an Expanded Framework Structure. , 1998, Angewandte Chemie.

[20]  A. V. Golubkov,et al.  Preparation and properties of GeS2 single crystals , 1998 .

[21]  Keiji Tanaka,et al.  Physical properties and photoinduced changes of amorphous GeS films , 1984 .

[22]  H. Schäfer,et al.  Die Kristallstruktur von Germaniumdiselenid , 1976 .

[23]  H. Schäfer,et al.  Die Kristallstruktur von H.T.‐GeS2 , 1975 .

[24]  M. D'Amboise,et al.  Apparent activation energies for electrical conduction of solid and liquid germanium(II) sulfide , 1968 .

[25]  H. S. Young,et al.  Germanium and Silicon Disulfides: Structure and Synthesis , 1965, Science.