Direct Observation of Charge Transfer in Solid Electrolyte for Electrochemical Metallization Memory
暂无分享,去创建一个
Rainer Waser | Stefan Tappertzhofen | Ilia Valov | Jan van den Hurk | R. Waser | S. Tappertzhofen | I. Valov | J. van den Hurk | D. Cho | Deok-Yong Cho
[1] S. Menzel,et al. Simulation of multilevel switching in electrochemical metallization memory cells , 2012 .
[2] R. Dittmann,et al. Origin of the Ultra‐nonlinear Switching Kinetics in Oxide‐Based Resistive Switches , 2011 .
[3] M. Kozicki,et al. Electrochemical metallization memories—fundamentals, applications, prospects , 2011, Nanotechnology.
[4] B Kahng,et al. Scaling theory for unipolar resistance switching. , 2010, Physical review letters.
[5] Chakravarthy Gopalan,et al. Demonstration of Conductive Bridging Random Access Memory (CBRAM) in Logic CMOS Process , 2010, 2010 IEEE International Memory Workshop.
[6] K. Asakura,et al. Ag L(3)-edge X-ray absorption near-edge structure of 4d(10) (Ag(+)) compounds: origin of the edge peak and its chemical relevance. , 2010, The journal of physical chemistry. A.
[7] M. Ferenets,et al. Thin Solid Films , 2010 .
[8] Michael Kund,et al. Selection of Optimized Materials for CBRAM Based on HT-XRD and Electrical Test Results , 2009 .
[9] R. Bruchhaus,et al. Investigation of the Reliability Behavior of Conductive-Bridging Memory Cells , 2009, IEEE Electron Device Letters.
[10] R. Waser,et al. Nanoionics-based resistive switching memories. , 2007, Nature materials.
[11] M. Zwijnenburg,et al. A computational study into the (tetrahedral) distortion of TX2 α-quartz materials : The effect of changing the chemical composition away from SiO2 , 2006 .
[12] T. Baumann,et al. Monolithic, high surface area, three-dimensional GeO2 nanostructures , 2006 .
[13] S. Harmer,et al. SULFUR K-EDGE XANES SPECTROSCOPY: CHEMICAL STATE AND CONTENT OF SULFUR IN SILICATE GLASSES , 2005 .
[14] Maria Mitkova,et al. Thermal and photodiffusion of Ag in S-rich Ge-S amorphous films , 2004 .
[15] K. Morinaga,et al. Compositional variation in the structure of Ge-S glasses , 2001 .
[16] J. Kawamura,et al. Ionic conductivity of Agx(GeSe3)1−x (0≤x≤0.571) glasses , 1999 .
[17] M. Jansen,et al. Electronic Structure of Silver Oxides Investigated by AgL XANES Spectroscopy , 1999 .
[18] A. Ankudinov,et al. REAL-SPACE MULTIPLE-SCATTERING CALCULATION AND INTERPRETATION OF X-RAY-ABSORPTION NEAR-EDGE STRUCTURE , 1998 .
[19] G. Ozin,et al. Synthesis and Crystal Structure of δ-GeS2 , the First Germanium Sulfide with an Expanded Framework Structure. , 1998, Angewandte Chemie.
[20] A. V. Golubkov,et al. Preparation and properties of GeS2 single crystals , 1998 .
[21] Keiji Tanaka,et al. Physical properties and photoinduced changes of amorphous GeS films , 1984 .
[22] H. Schäfer,et al. Die Kristallstruktur von Germaniumdiselenid , 1976 .
[23] H. Schäfer,et al. Die Kristallstruktur von H.T.‐GeS2 , 1975 .
[24] M. D'Amboise,et al. Apparent activation energies for electrical conduction of solid and liquid germanium(II) sulfide , 1968 .
[25] H. S. Young,et al. Germanium and Silicon Disulfides: Structure and Synthesis , 1965, Science.