Plasmonic substrates for multiplexed protein microarrays with femtomolar sensitivity and broad dynamic range.

Protein chips are widely used for high-throughput proteomic analysis, but to date, the low sensitivity and narrow dynamic range have limited their capabilities in diagnostics and proteomics. Here we present protein microarrays on a novel nanostructured, plasmonic gold film with near-infrared fluorescence enhancement of up to 100-fold, extending the dynamic range of protein detection by three orders of magnitude towards the fM regime. We employ plasmonic protein microarrays for the early detection of a cancer biomarker, carcinoembryonic antigen, in the sera of mice bearing a xenograft tumour model. Further, we demonstrate a multiplexed autoantigen array for human autoantibodies implicated in a range of autoimmune diseases with superior signal-to-noise ratios and broader dynamic range compared with commercial nitrocellulose and glass substrates. The high sensitivity, broad dynamic range and easy adaptability of plasmonic protein chips presents new opportunities in proteomic research and diagnostics applications.

[1]  S. Kingsmore,et al.  Multiplexed protein profiling on microarrays by rolling-circle amplification , 2002, Nature Biotechnology.

[2]  K. Sokolov,et al.  Enhancement of molecular fluorescence near the surface of colloidal metal films. , 1998, Analytical chemistry.

[3]  P. Brown,et al.  Autoantigen microarrays for multiplex characterization of autoantibody responses , 2002, Nature Medicine.

[4]  Joseph R Lakowicz,et al.  Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission. , 2005, Analytical biochemistry.

[5]  Zygmunt Gryczynski,et al.  Myoglobin immunoassay based on metal particle-enhanced fluorescence. , 2005, Journal of immunological methods.

[6]  U. Feldt-Rasmussen,et al.  Analytical and clinical performance goals for testing autoantibodies to thyroperoxidase, thyroglobulin, and thyrotropin receptor. , 1996, Clinical chemistry.

[7]  S M Hanash,et al.  Protein based microarrays: A tool for probing the proteome of cancer cells and tissues , 2001, Proteomics.

[8]  Emanuel F Petricoin,et al.  Protein microarrays: meeting analytical challenges for clinical applications. , 2003, Cancer cell.

[9]  Ignacy Gryczynski,et al.  Metal-enhanced fluorescence: an emerging tool in biotechnology. , 2005, Current opinion in biotechnology.

[10]  Joseph R. Lakowicz,et al.  Photostability of Cy3 and Cy5-Labeled DNA in the Presence of Metallic Silver Particles , 2002, Journal of Fluorescence.

[11]  S. Varnum,et al.  Elevated HGF levels in sera from breast cancer patients detected using a protein microarray ELISA. , 2002, Journal of proteome research.

[12]  Guosong Hong,et al.  Metal-enhanced fluorescence of carbon nanotubes. , 2010, Journal of the American Chemical Society.

[13]  Ignacy Gryczynski,et al.  Metal-enhanced fluoroimmunoassay on a silver film by vapor deposition. , 2005, The journal of physical chemistry. B.

[14]  Jian Zhang,et al.  Metal-enhanced fluorescence of an organic fluorophore using gold particles. , 2007, Optics express.

[15]  A. Nitzan,et al.  Spectroscopic properties of molecules interacting with small dielectric particles , 1981 .

[16]  David M. Rissin,et al.  Single-Molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations , 2010, Nature Biotechnology.

[17]  D. Reinhoudt,et al.  Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects. , 2002, Physical review letters.

[18]  A. Polman,et al.  Plasmon-enhanced luminescence near noble-metal nanospheres: Comparison of exact theory and an improved Gersten and Nitzan model , 2007 .

[19]  Boris Murmann,et al.  Matrix-insensitive protein assays push the limits of biosensors in medicine , 2009, Nature Medicine.

[20]  M. Teodorescu,et al.  Circulating anticentromere CENP-A and CENP-B antibodies in patients with diffuse and limited systemic sclerosis, systemic lupus erythematosus, and rheumatoid arthritis. , 2000, The Journal of rheumatology.

[21]  F. Arnett,et al.  Ro(SSA) and La(SSB) antibodies in the clinical spectrum of Sjögren's syndrome. , 1982, The Journal of rheumatology.

[22]  Vladimir M. Shalaev,et al.  Resonant Field Enhancements from Metal Nanoparticle Arrays , 2004 .

[23]  D. Ascherman The role of jo-1 in the immunopathogenesis of polymyositis: Current hypotheses , 2003, Current rheumatology reports.

[24]  H. Szmacinski,et al.  Enhanced Fluorescence from Periodic Arrays of Silver Nanoparticles , 2005, Journal of Fluorescence.

[25]  Hongjie Dai,et al.  Protein microarrays with carbon nanotubes as multicolor Raman labels , 2008, Nature Biotechnology.

[26]  Gavin MacBeath,et al.  Protein microarrays and proteomics , 2002, Nature Genetics.

[27]  H. Dai,et al.  A new approach to solution-phase gold seeding for SERS substrates. , 2011, Small.

[28]  Joseph R. Lakowicz,et al.  Increasing the sensitivity of DNA microarrays by metal-enhanced fluorescence using surface-bound silver nanoparticles , 2006, Nucleic acids research.

[29]  Zongfu Yu,et al.  Large Single-Molecule Fluorescence Enhancements Produced by a Bowtie Nanoantenna , 2009 .

[30]  Dansheng Song,et al.  Protein microarrays and quantum dot probes for early cancer detection. , 2007, Colloids and surfaces. B, Biointerfaces.

[31]  Franz R. Aussenegg,et al.  Enhanced dye fluorescence over silver island films: analysis of the distance dependence , 1993 .

[32]  Michael J. Natan,et al.  Hydroxylamine Seeding of Colloidal Au Nanoparticles in Solution and on Surfaces , 1998 .

[33]  H. Dai,et al.  Near-infrared-fluorescence-enhanced molecular imaging of live cells on gold substrates. , 2011, Angewandte Chemie.