Orthonormal Compactly Supported Wavelets with Optimal Sobolev Regularity
暂无分享,去创建一个
[1] I. Daubechies. Orthonormal bases of compactly supported wavelets II: variations on a theme , 1993 .
[2] I. Daubechies,et al. Two-scale difference equations II. local regularity, infinite products of matrices and fractals , 1992 .
[3] Ahmed H. Tewfik,et al. Parametrization of compactly supported orthonormal wavelets , 1993, IEEE Trans. Signal Process..
[4] Ingrid Daubechies,et al. Ten Lectures on Wavelets , 1992 .
[5] A. Cohen. Ondelettes, analyses multirésolutions et filtres miroirs en quadrature , 1990 .
[6] A. Cohen,et al. Regularité des bases d'ondelettes et mesures ergodiques , 1992 .
[7] D. Pollen. SU I (2, F [ z,1/z ]) for F A Subfield of C , 1990 .
[8] Hans Volkmer,et al. Asymptotic regularity of compactly supported wavelets , 1995 .
[9] Lina,et al. Parametrizations for Daubechies wavelets. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[10] Hans Volkmer. On the regularity of wavelets , 1992, IEEE Trans. Inf. Theory.
[11] L. Villemoes. Energy moments in time and frequency for two-scale difference equation solutions and wavelets , 1992 .
[12] Pierre Gilles Lemarié-Rieusset,et al. More Regular Wavelets , 1998 .
[13] Raymond O. Wells. Parametrizing smooth compactly supported wavelets , 1993 .
[14] T. Eirola. Sobolev characterization of solutions of dilation equations , 1992 .
[15] I. Daubechies. Orthonormal bases of compactly supported wavelets , 1988 .