Orthonormal Compactly Supported Wavelets with Optimal Sobolev Regularity

Numerical optimization is used to construct new orthonormal compactly supported wavelets with Sobolev regularity exponent as high as possible among those mother wavelets with a fixed support length and a fixed number of vanishing moments. The increased regularity is obtained by optimizing the locations of the roots the scaling filter has on the interval (pi/2,\pi). The results improve those obtained by I. Daubechies [Comm. Pure Appl. Math. 41 (1988), 909-996], H. Volkmer [SIAM J. Math. Anal. 26 (1995), 1075-1087], and P. G. Lemarie-Rieusset and E. Zahrouni [Appl. Comput. Harmon. Anal. 5 (1998), 92-105].

[1]  I. Daubechies Orthonormal bases of compactly supported wavelets II: variations on a theme , 1993 .

[2]  I. Daubechies,et al.  Two-scale difference equations II. local regularity, infinite products of matrices and fractals , 1992 .

[3]  Ahmed H. Tewfik,et al.  Parametrization of compactly supported orthonormal wavelets , 1993, IEEE Trans. Signal Process..

[4]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[5]  A. Cohen Ondelettes, analyses multirésolutions et filtres miroirs en quadrature , 1990 .

[6]  A. Cohen,et al.  Regularité des bases d'ondelettes et mesures ergodiques , 1992 .

[7]  D. Pollen SU I (2, F [ z,1/z ]) for F A Subfield of C , 1990 .

[8]  Hans Volkmer,et al.  Asymptotic regularity of compactly supported wavelets , 1995 .

[9]  Lina,et al.  Parametrizations for Daubechies wavelets. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[10]  Hans Volkmer On the regularity of wavelets , 1992, IEEE Trans. Inf. Theory.

[11]  L. Villemoes Energy moments in time and frequency for two-scale difference equation solutions and wavelets , 1992 .

[12]  Pierre Gilles Lemarié-Rieusset,et al.  More Regular Wavelets , 1998 .

[13]  Raymond O. Wells Parametrizing smooth compactly supported wavelets , 1993 .

[14]  T. Eirola Sobolev characterization of solutions of dilation equations , 1992 .

[15]  I. Daubechies Orthonormal bases of compactly supported wavelets , 1988 .