Reasoning in Expressive Description Logics under Infinitely Valued Gödel Semantics

Fuzzy Description Logics FDLs combine classical Description Logics with the semantics of Fuzzy Logics in order to represent and reason with vague knowledge. Most FDLs using truth values from the interval [0,1] have been shown to be undecidable in the presence of a negation constructor and general concept inclusions. One exception are those FDLs whose semantics is based on the infinitely valued Godel t-normi¾?G. We extend previous decidability results for the FDL G-$\mathcal{ALC}$ to deal with complex role inclusions, nominals, inverse roles, and qualified number restrictions. Our novel approach is based on a combination of the known crispification technique for finitely valued FDLs and an automata-based procedure for reasoning in G-$\mathcal{ALC}$.

[1]  Gert Smolka,et al.  Attributive Concept Descriptions with Complements , 1991, Artif. Intell..

[2]  Magdalena Ortiz,et al.  Reasoning and Query Answering in Description Logics , 2012, Reasoning Web.

[3]  Rafael Peñaloza,et al.  Decidable Gödel Description Logics without the Finitely-Valued Model Property , 2014, KR.

[4]  Radko Mesiar,et al.  Triangular Norms , 2000, Trends in Logic.

[5]  Stephan Tobies,et al.  The Complexity of Reasoning with Cardinality Restrictions and Nominals in Expressive Description Logics , 2011, ArXiv.

[6]  Umberto Straccia,et al.  Fuzzy description logics under Gödel semantics , 2009, Int. J. Approx. Reason..

[7]  M. Droste,et al.  Handbook of Weighted Automata , 2009 .

[8]  Fernando Bobillo,et al.  Optimizing the Crisp Representation of the Fuzzy Description Logic SROIQ , 2007, URSW.

[9]  Umberto Straccia,et al.  Transforming Fuzzy Description Logics into Classical Description Logics , 2004, JELIA.

[10]  Umberto Straccia,et al.  Reasoning with the finitely many-valued Lukasiewicz fuzzy Description Logic SROIQ , 2011, Inf. Sci..

[11]  Rafael Peñaloza,et al.  Finite Lattices Do Not Make Reasoning in ALCI Harder , 2011, URSW.

[12]  Umberto Straccia,et al.  Fuzzy description logics with general t-norms and datatypes , 2009, Fuzzy Sets Syst..

[13]  Stephan Tobies,et al.  Complexity results and practical algorithms for logics in knowledge representation , 2001, ArXiv.

[14]  Petr Hájek,et al.  Making fuzzy description logic more general , 2005, Fuzzy Sets Syst..

[15]  Yevgeny Kazakov,et al.  A Polynomial Translation from the Two-Variable Guarded Fragment with Number Restrictions to the Guarded Fragment , 2004, JELIA.

[16]  Umberto Straccia,et al.  On the (un)decidability of fuzzy description logics under Łukasiewicz t-norm , 2013, Inf. Sci..

[17]  Ian Horrocks,et al.  The Even More Irresistible SROIQ , 2006, KR.

[18]  Diego Calvanese,et al.  Regular Path Queries in Expressive Description Logics with Nominals , 2009, IJCAI.

[19]  Yevgeny Kazakov,et al.  SRIQ and SROIQ are Harder than SHOIQ , 2008, Description Logics.

[20]  Fernando Bobillo,et al.  A Crisp Representation for Fuzzy SHOIN with Fuzzy Nominals and General Concept Inclusions , 2006, URSW.

[21]  Diego Calvanese,et al.  The Description Logic Handbook: Theory, Implementation, and Applications , 2003, Description Logic Handbook.

[22]  Ian Horrocks,et al.  Practical Reasoning for Expressive Description Logics , 1999, LPAR.

[23]  Ian Horrocks,et al.  Decidability of SHIQ with Complex Role Inclusion Axioms , 2003, IJCAI.

[24]  Ian Horrocks,et al.  Practical Reasoning for Very Expressive Description Logics , 2000, Log. J. IGPL.

[25]  Klaus Schild,et al.  A Correspondence Theory for Terminological Logics: Preliminary Report , 1991, IJCAI.

[26]  Stefan Borgwardt,et al.  Fuzzy DLs over Finite Lattices with Nominals , 2014, Description Logics.

[27]  Umberto Straccia,et al.  Finite Fuzzy Description Logics and Crisp Representations , 2010, URSW.

[28]  Diego Calvanese,et al.  The Description Logic Handbook , 2007 .

[29]  Fernando Bobillo,et al.  A Crisp Representation for Fuzzy with Fuzzy Nominals and General Concept Inclusions. , 2008 .

[30]  Rafael Peñaloza,et al.  On the Undecidability of Fuzzy Description Logics with GCIs and Product T-norm , 2011, FroCoS.

[32]  Rafael Peñaloza,et al.  The Complexity of Lattice-Based Fuzzy Description Logics , 2012, Journal on Data Semantics.

[33]  Rafael Peñaloza,et al.  The limits of decidability in fuzzy description logics with general concept inclusions , 2015, Artif. Intell..

[34]  Umberto Straccia,et al.  Joining Gödel and Zadeh Fuzzy Logics in Fuzzy Description Logics , 2012, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[35]  Franz Baader,et al.  An Overview of Tableau Algorithms for Description Logics , 2001, Stud Logica.

[36]  Yevgeny Kazakov,et al.  RIQ and SROIQ Are Harder than SHOIQ , 2008, KR.

[37]  Ian Horrocks,et al.  The Even More Irresistible $\mathcal{SROIQ}$ , 2006 .