Correlating e-nose responses to wine sensorial descriptors and gas chromatography–mass spectrometry profiles using partial least squares regression analysis

[1]  José Pedro Santos,et al.  Classification of white wine aromas with an electronic nose. , 2005, Talanta.

[2]  José Pedro Santos,et al.  Discrimination of different aromatic compounds in water, ethanol and wine with a thin film sensor array , 2004 .

[3]  José Pedro Santos,et al.  A comparative study of sensor array and GC–MS: application to Madrid wines characterization , 2004 .

[4]  M. Aznar,et al.  Prediction of aged red wine aroma properties from aroma chemical composition. Partial least squares regression models. , 2003, Journal of agricultural and food chemistry.

[5]  A. Razungles,et al.  Differentiation of the aromas of Merlot and Cabernet Sauvignon wines using sensory and instrumental analysis. , 2000, Journal of agricultural and food chemistry.

[6]  J. Gardner,et al.  Electronic noses and their application in the food industry , 1997 .

[7]  Sinclair S. Yee,et al.  Monolithic thin-film metal-oxide gas-sensor arrays with application to monitoring of organic vapors , 1995 .

[8]  Sinclair S. Yee,et al.  Calibration of nonlinear solid-state sensor arrays using multivariate regression techniques , 1992 .

[9]  Ingemar Lundström,et al.  Artificial neural networks and gas sensor arrays: quantification of individual components in a gas mixture , 1991 .

[10]  Udo Weimar,et al.  Polymer-based sensor arrays and multicomponent analysis for the detection of hazardous oragnic vapours in the environment , 1995 .

[11]  S. Wold,et al.  The kernel algorithm for PLS , 1993 .