Cancer metabolism: looking forward

[1]  Yehua Han,et al.  Recent advances in mass spectrometry imaging of single cells , 2023, Analytical and Bioanalytical Chemistry.

[2]  T. Golub,et al.  Fatty acid synthesis is required for breast cancer brain metastasis , 2021, Nature Cancer.

[3]  J. Rathmell,et al.  The Complex Integration of T-cell Metabolism and Immunotherapy. , 2021, Cancer discovery.

[4]  H. Christofk,et al.  Asparagine couples mitochondrial respiration to ATF4 activity and tumor growth. , 2021, Cell metabolism.

[5]  R. DePinho,et al.  Metabolic Codependencies in the Tumor Microenvironment. , 2021, Cancer discovery.

[6]  B. Stockwell,et al.  Ferroptosis: mechanisms, biology and role in disease , 2021, Nature Reviews Molecular Cell Biology.

[7]  G. Bergers,et al.  The metabolism of cancer cells during metastasis , 2021, Nature Reviews Cancer.

[8]  T. Liang,et al.  The Evolving Landscape of Noncanonical Functions of Metabolic Enzymes in Cancer and Other Pathologies. , 2021, Cell metabolism.

[9]  Greg M. Delgoffe,et al.  Mitochondrial stress induced by continuous stimulation under hypoxia rapidly drives T cell exhaustion , 2021, Nature immunology.

[10]  P. Cramer,et al.  Small-molecule inhibitors of human mitochondrial DNA transcription , 2020, Nature.

[11]  K. Hunter,et al.  In Vivo Evidence for Serine Biosynthesis-Defined Sensitivity of Lung Metastasis, but Not of Primary Breast Tumors, to mTORC1 Inhibition. , 2020, Molecular cell.

[12]  Ted E. Natoli,et al.  A metastasis map of human cancer cell lines , 2020, Nature.

[13]  Dian Yang,et al.  Altered Mitochondria Functionality Defines a Metastatic Cell State in Lung Cancer and Creates an Exploitable Vulnerability , 2020, Cancer Research.

[14]  J. Rabinowitz,et al.  Upregulation of Antioxidant Capacity and Nucleotide Precursor Availability Suffices for Oncogenic Transformation. , 2020, Cell metabolism.

[15]  D. Sabatini,et al.  Metabolic determinants of cellular fitness dependent on mitochondrial reactive oxygen species , 2020, Science Advances.

[16]  Rebecca C. Timson,et al.  Functional Genomics In Vivo Reveal Metabolic Dependencies of Pancreatic Cancer Cells. , 2020, Cell metabolism.

[17]  D. Root,et al.  Functional Genomics Identifies Metabolic Vulnerabilities in Pancreatic Cancer. , 2020, Cell metabolism.

[18]  S. Gygi,et al.  3D Culture Models with CRISPR Screens Reveal Hyperactive NRF2 as a Prerequisite for Spheroid Formation via Regulation of Proliferation and Ferroptosis. , 2020, Molecular cell.

[19]  D. Sabatini,et al.  Genome-wide CRISPR screens reveal multitiered mechanisms through which mTORC1 senses mitochondrial dysfunction , 2020, Proceedings of the National Academy of Sciences.

[20]  Lydia W. S. Finley,et al.  Metabolic Coordination of Cell Fate by α-Ketoglutarate-Dependent Dioxygenases. , 2020, Trends in cell biology.

[21]  J. Rabinowitz,et al.  Comprehensive quantification of fuel use by the failing and nonfailing human heart , 2020, Science.

[22]  J. Mancias,et al.  Respiratory Supercomplexes Promote Mitochondrial Efficiency and Growth in Severely Hypoxic Pancreatic Cancer , 2020, Cell reports.

[23]  D. Nomura,et al.  A Cellular Mechanism to Detect and Alleviate Reductive Stress , 2020, Cell.

[24]  Chang S. Chan,et al.  Autophagy promotes growth of tumors with high mutational burden by inhibiting a T-cell immune response , 2020, Nature Cancer.

[25]  R. de Cabo,et al.  Age-induced accumulation of methylmalonic acid promotes tumour progression , 2020, Nature.

[26]  F. Bost,et al.  Autophagy regulates fatty acid availability for oxidative phosphorylation through mitochondria-endoplasmic reticulum contact sites , 2020, Nature Communications.

[27]  M. V. Heiden,et al.  Cell Programmed Nutrient Partitioning in the Tumor Microenvironment , 2020, bioRxiv.

[28]  R. de Cabo,et al.  Age-induced methylmalonic acid accumulation promotes tumor progression , 2020, Nature.

[29]  S. Morrison,et al.  Lymph protects metastasizing melanoma cells from ferroptosis , 2020, Nature.

[30]  N. Chandel,et al.  Mitochondrial Metabolism as a Target for Cancer Therapy. , 2020, Cell metabolism.

[31]  J. Powell,et al.  Metabolism of immune cells in cancer , 2020, Nature Reviews Cancer.

[32]  M. Mann,et al.  Limited Environmental Serine and Glycine Confer Brain Metastasis Sensitivity to PHGDH Inhibition. , 2020, Cancer discovery.

[33]  Howard Y. Chang,et al.  Impaired mitochondrial oxidative phosphorylation limits the self-renewal of T cells exposed to persistent antigen , 2020, Nature Immunology.

[34]  P. Glazer,et al.  Oncometabolites suppress DNA repair by disrupting local chromatin signalling , 2020, Nature.

[35]  T. Phan,et al.  The dormant cancer cell life cycle , 2020, Nature Reviews Cancer.

[36]  J. Rathmell,et al.  Targeting Metabolism to Improve the Tumor Microenvironment for Cancer Immunotherapy. , 2020, Molecular cell.

[37]  A. Maitra,et al.  Tumor-Reprogrammed Stromal BCAT1 Fuels Branched Chain Ketoacid Dependency in Stromal-Rich PDAC Tumors , 2020, Nature Metabolism.

[38]  A. Chinnaiyan,et al.  Cancer SLC43A2 alters T cell methionine metabolism and histone methylation , 2020, Nature.

[39]  J. Asara,et al.  ERK2 Phosphorylates PFAS to Mediate Posttranslational Control of De Novo Purine Synthesis. , 2020, Molecular cell.

[40]  J. Rabinowitz,et al.  SHMT inhibition is effective and synergizes with methotrexate in T-cell acute lymphoblastic leukemia , 2020, Leukemia.

[41]  Peiwei Huangyang,et al.  FBP1 loss disrupts liver metabolism and promotes tumorigenesis through a hepatic stellate cell senescence secretome , 2020, Nature Cell Biology.

[42]  B. Shuch,et al.  Oncometabolites suppress DNA repair by disrupting local chromatin signaling , 2020, Nature.

[43]  K. Vousden,et al.  Dietary Approaches to Cancer Therapy. , 2020, Cancer cell.

[44]  J. Debnath,et al.  Autophagy promotes immune evasion of pancreatic cancer by degrading MHC-I , 2020, Nature.

[45]  J. Rathmell,et al.  Immunometabolism: From basic mechanisms to translation , 2020, Immunological reviews.

[46]  S. Weinberg,et al.  Mitochondrial ubiquinol oxidation is necessary for tumor growth , 2020, Nature.

[47]  I. Harris,et al.  The Complex Interplay between Antioxidants and ROS in Cancer. , 2020, Trends in cell biology.

[48]  B. Faubert,et al.  Metabolic reprogramming and cancer progression , 2020, Science.

[49]  J. Asara,et al.  IMPDH inhibitors for antitumor therapy in tuberous sclerosis complex. , 2020, JCI insight.

[50]  Stephen A. Sastra,et al.  Cysteine depletion induces pancreatic tumor ferroptosis in mice , 2020, Science.

[51]  Peiwei Huangyang,et al.  FBP1 loss disrupts liver metabolism and promotes tumourigenesis through a hepatic stellate cell senescence secretome , 2020, Nature Cell Biology.

[52]  C. Thompson,et al.  Proline biosynthesis is a vent for TGFβ‐induced mitochondrial redox stress , 2020, The EMBO journal.

[53]  J. Rabinowitz,et al.  Quantitative fluxomics of circulating metabolites , 2020, bioRxiv.

[54]  Sheng-Cai Lin,et al.  AMPK and TOR: The Yin and Yang of Cellular Nutrient Sensing and Growth Control. , 2020, Cell metabolism.

[55]  A. Edinger,et al.  Macropinocytosis confers resistance to therapies targeting cancer anabolism , 2020, Nature Communications.

[56]  Devin K. Schweppe,et al.  A Quantitative Tissue-Specific Landscape of Protein Redox Regulation during Aging , 2020, Cell.

[57]  K. Wellen,et al.  Advances into understanding metabolites as signaling molecules in cancer progression. , 2020, Current opinion in cell biology.

[58]  O. Fiehn,et al.  Adipocyte-Induced FABP4 Expression in Ovarian Cancer Cells Promotes Metastasis and Mediates Carboplatin Resistance , 2020, Cancer Research.

[59]  J. Doroshow,et al.  Inhibiting the Activity of NADPH Oxidase in Cancer. , 2020, Antioxidants & redox signaling.

[60]  R. Deberardinis,et al.  We need to talk about the Warburg effect , 2020, Nature Metabolism.

[61]  James B. Mitchell,et al.  Dynamic Imaging of LDH Inhibition in Tumors Reveals Rapid In Vivo Metabolic Rewiring and Vulnerability to Combination Therapy , 2020, Cell reports.

[62]  L. O’Neill,et al.  Krebs Cycle Reborn in Macrophage Immunometabolism. , 2020, Annual review of immunology.

[63]  D. Sabatini,et al.  mTOR at the nexus of nutrition, growth, ageing and disease , 2020, Nature Reviews Molecular Cell Biology.

[64]  D. Tuveson,et al.  Dynamic ROS Control by TIGAR Regulates the Initiation and Progression of Pancreatic Cancer , 2020, Cancer cell.

[65]  N. Chandel,et al.  Mitochondrial TCA cycle metabolites control physiology and disease , 2020, Nature Communications.

[66]  Takla Griss,et al.  Metabolic Profiling Using Stable Isotope Tracing Reveals Distinct Patterns of Glucose Utilization by Physiologically Activated CD8+ T Cells. , 2019, Immunity.

[67]  J. Locasale,et al.  Quantitative analysis of the physiological contributions of glucose to the TCA cycle , 2019, bioRxiv.

[68]  A. Mancuso,et al.  Fructose-1,6-Bisphosphatase 2 Inhibits Sarcoma Progression by Restraining Mitochondrial Biogenesis. , 2019, Cell metabolism.

[69]  J. Powell,et al.  Glutamine blockade induces divergent metabolic programs to overcome tumor immune evasion , 2019, Science.

[70]  G. Hoxhaj,et al.  The PI3K–AKT network at the interface of oncogenic signalling and cancer metabolism , 2019, Nature Reviews Cancer.

[71]  D. Schadendorf,et al.  Metabolic heterogeneity confers differences in melanoma metastatic potential , 2019, Nature.

[72]  A. Schulze,et al.  Lipid Metabolism at the Nexus of Diet and Tumor Microenvironment. , 2019, Trends in cancer.

[73]  D. Feldser,et al.  Copper is an essential regulator of the autophagic kinases ULK1/2 to drive lung adenocarcinoma , 2019, bioRxiv.

[74]  G. Stewart,et al.  Oncometabolites in renal cancer , 2019, Nature Reviews Nephrology.

[75]  L. Linares,et al.  Metabolic functions of the tumor suppressor p53: Implications in normal physiology, metabolic disorders, and cancer , 2019, Molecular metabolism.

[76]  K. Vousden,et al.  Cell Clustering Promotes a Metabolic Switch that Supports Metastatic Colonization , 2019, Cell metabolism.

[77]  B. Ren,et al.  Metabolic regulation of gene expression by histone lactylation , 2019, Nature.

[78]  M. V. Vander Heiden,et al.  A framework for examining how diet impacts tumour metabolism , 2019, Nature Reviews Cancer.

[79]  P. Carmeliet,et al.  Hallmarks of Endothelial Cell Metabolism in Health and Disease. , 2019, Cell metabolism.

[80]  L. Fontana Faculty Opinions recommendation of Dietary methionine influences therapy in mouse cancer models and alters human metabolism. , 2019, Faculty Opinions – Post-Publication Peer Review of the Biomedical Literature.

[81]  J. Debnath,et al.  Targeting Autophagy in Cancer: Recent Advances and Future Directions. , 2019, Cancer discovery.

[82]  T. Papagiannakopoulos,et al.  Targeting Metabolic Bottlenecks in Lung Cancer. , 2019, Trends in cancer.

[83]  M. Bergo,et al.  BACH1 Stabilization by Antioxidants Stimulates Lung Cancer Metastasis , 2019, Cell.

[84]  B. Ueberheide,et al.  Nrf2 Activation Promotes Lung Cancer Metastasis by Inhibiting the Degradation of Bach1 , 2019, Cell.

[85]  D. Hsu,et al.  Dietary methionine links nutrition and metabolism to the efficacy of cancer therapies , 2019, Nature.

[86]  S. Heiles,et al.  Metabolic Imaging at the Single-Cell Scale: Recent Advances in Mass Spectrometry Imaging. , 2019, Annual review of analytical chemistry.

[87]  E. White,et al.  Role of tumor and host autophagy in cancer metabolism , 2019, Genes & development.

[88]  Yijuan Zhang,et al.  Macropinocytosis in Cancer: A Complex Signaling Network. , 2019, Trends in cancer.

[89]  A. Chinnaiyan,et al.  CD8+ T cells regulate tumor ferroptosis during cancer immunotherapy , 2019, Nature.

[90]  S. Morrison,et al.  Metabolic Adaptation Fuels Lymph Node Metastasis. , 2019, Cell metabolism.

[91]  E. Petricoin,et al.  Combination of ERK and autophagy inhibition as a treatment approach for pancreatic cancer , 2019, Nature Medicine.

[92]  J. Olzmann,et al.  Exogenous Monounsaturated Fatty Acids Promote a Ferroptosis-Resistant Cell State. , 2019, Cell chemical biology.

[93]  C. Verfaillie,et al.  Breast cancer cells rely on environmental pyruvate to shape the metastatic niche , 2019, Nature.

[94]  R. Shaw,et al.  Genetic Analysis Reveals AMPK Is Required to Support Tumor Growth in Murine Kras-Dependent Lung Cancer Models. , 2019, Cell metabolism.

[95]  Xiaoyang Su,et al.  Autophagy modulates lipid metabolism to maintain metabolic flexibility for Lkb1-deficient Kras-driven lung tumorigenesis , 2019, Genes & development.

[96]  J. Yap,et al.  Protective autophagy elicited by RAF→MEK→ERK inhibition suggests a treatment strategy for RAS-driven cancers , 2019, Nature Medicine.

[97]  Gabriela Kalna,et al.  Improving the metabolic fidelity of cancer models with a physiological cell culture medium , 2019, Science Advances.

[98]  M. V. Vander Heiden,et al.  Quantification of microenvironmental metabolites in murine cancers reveals determinants of tumor nutrient availability , 2018, bioRxiv.

[99]  P. Carmeliet,et al.  Serine Synthesis via PHGDH Is Essential for Heme Production in Endothelial Cells. , 2018, Cell metabolism.

[100]  E. White,et al.  Autophagy maintains tumor growth through circulating arginine , 2018, Nature.

[101]  Christian M. Metallo,et al.  Transaminase Inhibition by 2-Hydroxyglutarate Impairs Glutamate Biosynthesis and Redox Homeostasis in Glioma , 2018, Cell.

[102]  R. Deberardinis,et al.  Inosine Monophosphate Dehydrogenase Dependence in a Subset of Small Cell Lung Cancers. , 2018, Cell metabolism.

[103]  M. Sharpley,et al.  Extracellular Matrix Remodeling Regulates Glucose Metabolism through TXNIP Destabilization , 2018, Cell.

[104]  R. Eisenman,et al.  The MYC transcription factor network: balancing metabolism, proliferation and oncogenesis , 2018, Frontiers of Medicine.

[105]  M. Rubin,et al.  Suppression of insulin feedback enhances the efficacy of PI3K inhibitors , 2018, Nature.

[106]  Robert J Gillies,et al.  Eco-evolutionary causes and consequences of temporal changes in intratumoural blood flow , 2018, Nature Reviews Cancer.

[107]  M. V. Vander Heiden,et al.  Aspartate is an endogenous metabolic limitation for tumour growth , 2018, Nature Cell Biology.

[108]  M. Snuderl,et al.  Aspartate is a limiting metabolite for cancer cell proliferation under hypoxia and in tumors , 2018, Nature Cell Biology.

[109]  E. Lin,et al.  Autophagy Sustains Pancreatic Cancer Growth through Both Cell-Autonomous and Nonautonomous Mechanisms. , 2018, Cancer discovery.

[110]  Charles M. Perou,et al.  Asparagine bioavailability governs metastasis in a model of breast cancer , 2018, Nature.

[111]  Y. Xiong,et al.  Metabolism, Activity, and Targeting of D-and L-2-Hydroxyglutarates , 2018, Trends in cancer.

[112]  A. Walch,et al.  Selenium Utilization by GPX4 Is Required to Prevent Hydroperoxide-Induced Ferroptosis , 2017, Cell.

[113]  D. Sabatini,et al.  NFS1 undergoes positive selection in lung tumours and protects cells from ferroptosis , 2017, Nature.

[114]  D. Sabatini Twenty-five years of mTOR: Uncovering the link from nutrients to growth , 2017, Proceedings of the National Academy of Sciences.

[115]  Benjamin F. Cravatt,et al.  Chemical Proteomics Identifies Druggable Vulnerabilities in a Genetically Defined Cancer , 2017, Cell.

[116]  Joshua D. Rabinowitz,et al.  Glucose feeds the TCA cycle via circulating lactate , 2017, Nature.

[117]  Jamey D. Young,et al.  Lactate Metabolism in Human Lung Tumors , 2017, Cell.

[118]  Francisco J. Sánchez-Rivera,et al.  Keap1 loss promotes Kras-driven lung cancer and results in a dependence on glutaminolysis , 2017, Nature Medicine.

[119]  V. Velagapudi,et al.  mTORC1 Regulates Mitochondrial Integrated Stress Response and Mitochondrial Myopathy Progression. , 2017, Cell metabolism.

[120]  Jill P. Mesirov,et al.  Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway , 2017, Nature.

[121]  Michael T. McManus,et al.  Abstract 1006: Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition , 2017 .

[122]  P. Bastiaens,et al.  Assay to visualize specific protein oxidation reveals spatio-temporal regulation of SHP2 , 2017, Nature Communications.

[123]  O. Sansom,et al.  Modulating the therapeutic response of tumours to dietary serine and glycine starvation , 2017, Nature.

[124]  Benjamin P. C. Chen,et al.  CPS1 maintains pyrimidine pools and DNA synthesis in KRAS/LKB1-mutant lung cancer cells , 2017, Nature.

[125]  Xin Gao,et al.  Physiologic Medium Rewires Cellular Metabolism and Reveals Uric Acid as an Endogenous Inhibitor of UMP Synthase , 2017, Cell.

[126]  Gregory A. Breuer,et al.  2-Hydroxyglutarate produced by neomorphic IDH mutations suppresses homologous recombination and induces PARP inhibitor sensitivity , 2017, Science Translational Medicine.

[127]  Matthew G. Vander Heiden,et al.  Understanding the Intersections between Metabolism and Cancer Biology , 2017, Cell.

[128]  Camille Stephan-Otto Attolini,et al.  Targeting metastasis-initiating cells through the fatty acid receptor CD36 , 2016, Nature.

[129]  G. Stephanopoulos,et al.  Direct evidence for cancer-cell-autonomous extracellular protein catabolism in pancreatic tumors , 2016, Nature Medicine.

[130]  G. Semenza,et al.  Hypoxia-Inducible Factors: Master Regulators of Cancer Progression. , 2016, Trends in cancer.

[131]  G. Georgiou,et al.  Systemic depletion of L-cyst(e)ine with cyst(e)inase increases reactive oxygen species and suppresses tumor growth , 2016, Nature Medicine.

[132]  J. Hurst William Kaelin, Peter Ratcliffe, and Gregg Semenza receive the 2016 Albert Lasker Basic Medical Research Award. , 2016, The Journal of clinical investigation.

[133]  J. Rabinowitz,et al.  Erratum: Reversal of Cytosolic One-Carbon Flux Compensates for Loss of the Mitochondrial Folate Pathway (Cell Metabolism (2016) 23(6) (1140–1153)(S1550413116301681)(10.1016/j.cmet.2016.04.016)) , 2016 .

[134]  Joerg M. Buescher,et al.  Breast Cancer-Derived Lung Metastases Show Increased Pyruvate Carboxylase-Dependent Anaplerosis. , 2016, Cell reports.

[135]  P. Clemons,et al.  Inhibition of Dihydroorotate Dehydrogenase Overcomes Differentiation Blockade in Acute Myeloid Leukemia , 2016, Cell.

[136]  Purushottam D. Dixit,et al.  Tissue of origin dictates branched-chain amino acid metabolism in mutant Kras-driven cancers , 2016, Science.

[137]  Sathesh Bhat,et al.  Inhibition of acetyl-CoA carboxylase suppresses fatty acid synthesis and tumor growth of non-small cell lung cancer in preclinical models , 2016, Nature Medicine.

[138]  Emanuel J. V. Gonçalves,et al.  Fumarate is an epigenetic modifier that elicits epithelial-to-mesenchymal transition , 2016, Nature.

[139]  L. Cantley,et al.  Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion , 2016, Nature.

[140]  J. Rabinowitz,et al.  Reversal of Cytosolic One-Carbon Flux Compensates for Loss of the Mitochondrial Folate Pathway. , 2016, Cell metabolism.

[141]  B. Faubert,et al.  Metabolic Heterogeneity in Human Lung Tumors , 2016, Cell.

[142]  Abhishek K. Jha,et al.  Environment Impacts the Metabolic Dependencies of Ras-Driven Non-Small Cell Lung Cancer. , 2016, Cell metabolism.

[143]  J. Albeck,et al.  Phosphoinositide 3-Kinase Regulates Glycolysis through Mobilization of Aldolase from the Actin Cytoskeleton , 2016, Cell.

[144]  M. Bergo,et al.  Antioxidants can increase melanoma metastasis in mice , 2015, Science Translational Medicine.

[145]  R. Deberardinis,et al.  Oxidative stress inhibits distant metastasis by human melanoma cells , 2015, Nature.

[146]  E. Ruppin,et al.  Diversion of aspartate in ASS1-deficient tumors fosters de novo pyrimidine synthesis , 2015, Nature.

[147]  A. Vazquez,et al.  Pyruvate carboxylation enables growth of SDH-deficient cells by supporting aspartate biosynthesis , 2015, Nature Cell Biology.

[148]  C. Brennan,et al.  Glutamine-based PET imaging facilitates enhanced metabolic evaluation of gliomas in vivo , 2015, Science Translational Medicine.

[149]  A. Lane,et al.  Pyruvate carboxylase is critical for non-small-cell lung cancer proliferation. , 2015, The Journal of clinical investigation.

[150]  S. Inoue,et al.  Glutathione and thioredoxin antioxidant pathways synergize to drive cancer initiation and progression. , 2015, Cancer cell.

[151]  M. V. Vander Heiden,et al.  Human Phosphoglycerate Dehydrogenase Produces the Oncometabolite d-2-Hydroxyglutarate , 2014, ACS chemical biology.

[152]  M. Lercher,et al.  Mitochondrial 2-hydroxyglutarate metabolism. , 2014, Mitochondrion.

[153]  T. Copetti,et al.  A mitochondrial switch promotes tumor metastasis. , 2014, Cell reports.

[154]  J. Ochocki,et al.  Fructose-1, 6-bisphosphatase opposes renal carcinoma progression , 2014, Nature.

[155]  E. Larsson,et al.  Antioxidants Accelerate Lung Cancer Progression in Mice , 2014, Science Translational Medicine.

[156]  K. Vousden,et al.  TIGAR, TIGAR, burning bright , 2014, Cancer & metabolism.

[157]  T. Jacks,et al.  Autophagy suppresses progression of K-ras-induced lung tumors to oncocytomas and maintains lipid homeostasis. , 2013, Genes & development.

[158]  Christian M. Metallo,et al.  Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells , 2013, Nature.

[159]  Benjamin L. Ebert,et al.  (R)-2-Hydroxyglutarate Is Sufficient to Promote Leukemogenesis and Its Effects Are Reversible , 2013, Science.

[160]  Wei Gu,et al.  Tumor Suppression in the Absence of p53-Mediated Cell-Cycle Arrest, Apoptosis, and Senescence , 2012, Cell.

[161]  T. Fan,et al.  The metabolic profile of tumors depends on both the responsible genetic lesion and tissue type. , 2012, Cell metabolism.

[162]  W. Marston Linehan,et al.  Reductive carboxylation supports growth in tumor cells with defective mitochondria , 2011, Nature.

[163]  C. Dang,et al.  Otto Warburg's contributions to current concepts of cancer metabolism , 2011, Nature Reviews Cancer.

[164]  Scott E. Kern,et al.  Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis , 2011, Nature.

[165]  Chi V. Dang,et al.  Otto Warburg's contributions to current concepts of cancer metabolism , 2011, Nature Reviews Cancer.

[166]  Eyal Gottlieb,et al.  Inborn and acquired metabolic defects in cancer , 2011, Journal of Molecular Medicine.

[167]  E. Gottlieb,et al.  Targeting metabolic transformation for cancer therapy , 2010, Nature Reviews Cancer.

[168]  L. Cantley,et al.  Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation , 2009, Science.

[169]  C. Thompson,et al.  Metabolic enzymes as oncogenes or tumor suppressors. , 2009, The New England journal of medicine.

[170]  Ralph Weissleder,et al.  Effective Use of PI3K and MEK Inhibitors to Treat Mutant K-Ras G12D and PIK3CA H1047R Murine Lung Cancers , 2008, Nature Medicine.

[171]  J. Rathmell,et al.  Glucose Uptake Is Limiting in T Cell Activation and Requires CD28-Mediated Akt-Dependent and Independent Pathways1 , 2008, The Journal of Immunology.

[172]  N. Tonks,et al.  Protein tyrosine phosphatases: from genes, to function, to disease , 2006, Nature Reviews Molecular Cell Biology.

[173]  D. Albertson,et al.  Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability , 2005, Nature.

[174]  Michael Karin,et al.  Reactive Oxygen Species Promote TNFα-Induced Death and Sustained JNK Activation by Inhibiting MAP Kinase Phosphatases , 2005, Cell.

[175]  R. Gillies,et al.  Why do cancers have high aerobic glycolysis? , 2004, Nature Reviews Cancer.

[176]  R A Jungmann,et al.  c-Myc transactivation of LDH-A: implications for tumor metabolism and growth. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[177]  O. Warburg [Origin of cancer cells]. , 1956, Oncologia.

[178]  J. Rabinowitz,et al.  Local production of lactate, ribose phosphate, and amino acids within human triple-negative breast cancer , 2021 .

[179]  Sejong Bae,et al.  A Phase I Pharmacologic Study of Necitumumab (IMC-11F8), a Fully Human IgG1 Monoclonal Antibody , 2014 .

[180]  W. D. Martin,et al.  Mitochondrial genome instability and ROS enhance intestinal tumorigenesis in APC(Min/+) mice. , 2012, The American journal of pathology.

[181]  M. V. Vander Heiden Targeting cancer metabolism: a therapeutic window opens. , 2011, Nature reviews. Drug discovery.

[182]  L. Liau,et al.  Cancer-associated IDH1 mutations produce 2-hydroxyglutarate , 2010, Nature.

[183]  Pavan Reddy,et al.  Recent Advances and Future Directions , 2004 .