The kinematic algebras from the scattering equations
暂无分享,去创建一个
[1] Z. Bern,et al. Color-kinematics duality for pure Yang-Mills and gravity at one and two loops , 2013, 1303.6605.
[2] Sean Litsey,et al. Kinematic numerators and a double-copy formula for N=4 super-Yang-Mills residues , 2013, 1309.7681.
[3] Josh Nohle. Color-Kinematics Duality in One-Loop Four-Gluon Amplitudes with Matter , 2013, 1309.7416.
[4] Song He,et al. Scattering of massless particles: scalars, gluons and gravitons , 2013, 1309.0885.
[5] L. Mason,et al. Conformal and Einstein gravity from twistor actions , 2013, 1307.5043.
[6] Song He,et al. Scattering of massless particles in arbitrary dimensions. , 2013, Physical review letters.
[7] Song He,et al. Scattering equations and Kawai-Lewellen-Tye orthogonality , 2013, 1306.6575.
[8] L. Mason,et al. Gravity in Twistor Space and its Grassmannian Formulation , 2012, 1207.4712.
[9] Carlos R. Mafra,et al. The structure of n-point one-loop open superstring amplitudes , 2012, 1203.6215.
[10] T. Adamo. Worldsheet factorization for twistor-strings , 2013, 1310.8602.
[11] S. Stieberger,et al. Superstring/supergravity Mellin correspondence in Grassmannian formulation , 2013, 1306.1844.
[12] Chih-Hao Fu,et al. Note on construction of dual-trace factor in Yang-Mills theory , 2013, 1305.2996.
[13] Chih-Hao Fu,et al. The construction of dual-trace factor in Yang-Mills theory , 2013, 1304.2978.
[14] N. Bjerrum-Bohr,et al. Integrand oxidation and one-loop colour-dual numerators in $ \mathcal{N}=4 $ gauge theory , 2013, 1303.2913.
[15] S. Stieberger,et al. Superstring amplitudes as a Mellin transform of supergravity , 2013, 1303.1532.
[16] R. Boels,et al. Colour-Kinematics duality for one-loop rational amplitudes , 2013, 1301.4165.
[17] F. Cachazo. Resultants and Gravity Amplitudes , 2013, 1301.3970.
[18] David Skinner. Twistor Strings for N=8 Supergravity , 2013, 1301.0868.
[19] Chih-Hao Fu,et al. An algebraic approach to BCJ numerators , 2012, 1212.6168.
[20] R. Boels,et al. On powercounting in perturbative quantum gravity theories through color-kinematic duality , 2012, 1212.3473.
[21] B. Kniehl,et al. Color-kinematic duality for form factors , 2012, 1211.7028.
[22] C. White,et al. BCJ duality and the double copy in the soft limit , 2012, 1210.1110.
[23] Song He. A link representation for gravity amplitudes , 2012, 1207.4064.
[24] L. Mason,et al. Twistor-strings and gravity tree amplitudes , 2012, 1207.3602.
[25] David Skinner,et al. Gravity from rational curves in twistor space. , 2012, Physical review letters.
[26] J. Carrasco,et al. One-loop four-point amplitudes in pure and matter-coupled $ \mathcal{N}\leq 4 $ supergravity , 2012, 1212.1146.
[27] M. Bullimore,et al. New Formulae for Gravity Amplitudes: Parity Invariance and Soft Limits , 2012, 1207.3940.
[28] Song He,et al. Graphs, determinants and gravity amplitudes , 2012, 1207.3220.
[29] F. Cachazo,et al. A 'Twistor String' Inspired Formula For Tree-Level Scattering Amplitudes in N=8 SUGRA , 2012, 1206.6511.
[30] F. Cachazo. Fundamental BCJ Relation in N=4 SYM From The Connected Formulation , 2012, 1206.5970.
[31] A. Hodges. A simple formula for gravitational MHV amplitudes , 2012, 1204.1930.
[32] N. Bjerrum-Bohr,et al. Algebras for amplitudes , 2012, 1203.0944.
[33] L. Dixon,et al. Simplifying multiloop integrands and ultraviolet divergences of gauge theory and gravity amplitudes , 2012, 1201.5366.
[34] R. Boels,et al. Yang-Mills amplitude relations at loop level from non-adjacent BCFW shifts , 2011, 1110.4462.
[35] R. Boels,et al. New relations for scattering amplitudes in Yang-Mills theory at loop level , 2011, 1109.5888.
[36] J. Carrasco,et al. Five-point amplitudes in N=4 super-Yang-Mills theory and N=8 supergravity , 2011, 1106.4711.
[37] D. O’Connell,et al. The kinematic algebra from the self-dual sector , 2011, 1105.2565.
[38] Carlos R. Mafra,et al. Explicit BCJ numerators from pure spinors , 2011, 1104.5224.
[39] Z. Bern,et al. Color dual form for gauge-theory amplitudes. , 2011, Physical review letters.
[40] T. Søndergaard,et al. The momentum kernel of gauge and gravity theories , 2010, 1010.3933.
[41] Rijun Huang,et al. Gauge amplitude identities by on-shell recursion relation in S-matrix program , 2010, 1004.3417.
[42] T. Søndergaard,et al. Proof of gravity and Yang-Mills amplitude relations , 2010, 1007.3111.
[43] T. Søndergaard,et al. Gravity and Yang-Mills Amplitude Relations , 2010, 1005.4367.
[44] Michael Kiermaier,et al. Gravity as the Square of Gauge Theory , 2010, 1004.0693.
[45] J. Carrasco,et al. Perturbative quantum gravity as a double copy of gauge theory. , 2010, Physical review letters.
[46] S. Stieberger. Open & Closed vs. Pure Open String Disk Amplitudes , 2009, 0907.2211.
[47] P. Vanhove,et al. Minimal basis for gauge theory amplitudes. , 2009, Physical review letters.
[48] S. Chekanov,et al. Energy dependence of the charged multiplicity in deep inelastic scattering at HERA. , 2008 .
[49] Z. Bern,et al. New Relations for Gauge-Theory Amplitudes , 2008, 0805.3993.
[50] R. Roiban,et al. On the tree level S matrix of Yang-Mills theory , 2004, hep-th/0403190.
[51] E. Witten. Perturbative Gauge Theory as a String Theory in Twistor Space , 2003, hep-th/0312171.
[52] J. Rozowsky,et al. Multi-leg one-loop gravity amplitudes from gauge theory , 1998, hep-th/9811140.
[53] Chalmers,et al. Self-dual sector of QCD amplitudes. , 1996, Physical review. D, Particles and fields.
[54] D. Cangemi. Self-dual Yang-Mills Theory and One-Loop Like-Helicity QCD Multi-gluon Amplitudes , 1996 .
[55] W. Giele,et al. Recursive calculations for processes with n gluons , 1988 .
[56] D. Gross,et al. String Theory Beyond the Planck Scale , 1988 .
[57] D. Lewellen,et al. A Relation Between Tree Amplitudes of Closed and Open Strings , 1986 .