A finite element method with overlapping meshes for free-boundary axisymmetric plasma equilibria in realistic geometries

Existing finite element implementations for the computation of free-boundary axisymmetric plasma equilibria approximate the unknown poloidal flux function by standard lowest order continuous finite elements with discontinuous gradients. As a consequence, the location of critical points of the poloidal flux, that are of paramount importance in tokamak engineering, is constrained to nodes of the mesh leading to undesired jumps in transient problems. Moreover, recent numerical results for the self-consistent coupling of equilibrium with resistive diffusion and transport suggest the necessity of higher regularity when approximating the flux map. In this work we propose a mortar element method that employs two overlapping meshes. One mesh with Cartesian quadrilaterals covers the vacuum chamber domain accessible by the plasma and one mesh with triangles discretizes the region outside. The two meshes overlap in a narrow region. This approach gives the flexibility to achieve easily and at low cost higher order regularity for the approximation of the flux function in the domain covered by the plasma, while preserving accurate meshing of the geometric details outside this region. The continuity of the numerical solution in the region of overlap is weakly enforced by a mortar-like mapping.

[1]  H. Brezis,et al.  On a free boundary problem arising in plasma physics , 1980 .

[2]  Jacques Blum,et al.  The self-consistent equilibrium and diffusion code sced , 1981 .

[3]  Hiroshi Akima,et al.  A method of bivariate interpolation and smooth surface fitting based on local procedures , 1974, Commun. ACM.

[4]  D. P. Kostomarov,et al.  The numerical solution of the self-consistent evolution of plasma equilibria , 2004 .

[5]  D. Ryutov Geometrical Properties of a "Snow-Flake" Divertor , 2007 .

[6]  J. P. Goedbloed,et al.  Isoparametric Bicubic Hermite Elements for Solution of the Grad-Shafranov Equation , 1991 .

[7]  Barry Koren,et al.  A mimetic spectral element solver for the Grad-Shafranov equation , 2015, J. Comput. Phys..

[8]  Jacques Blum,et al.  Plasma equilibrium evolution at the resistive diffusion timescale , 1984 .

[9]  Yuri A. Kuznetsov Overlapping Domain Decomposition with Non-matching Grids , 1997 .

[10]  Alexandra Christophe,et al.  A mortar element approach on overlapping non-nested grids: Application to eddy current non-destructive testing , 2015, Appl. Math. Comput..

[11]  M. Romé,et al.  Low-power radio-frequency excitation as a plasma source in a Penning–Malmberg trap: a systematic study , 2015, Journal of Plasma Physics.

[12]  K. Bell A refined triangular plate bending finite element , 1969 .

[13]  L. Demkowicz One and two dimensional elliptic and Maxwell problems , 2006 .

[14]  J. L. Luxon,et al.  Magnetic analysis of non-circular cross-section tokamaks , 1982 .

[15]  B. Jüttler,et al.  Monotonicity-preserving interproximation of B-H -curves , 2006 .

[16]  Houssem Haddar,et al.  Artificial boundary conditions for axisymmetric eddy current probe problems , 2014, Comput. Math. Appl..

[17]  Roger Temam,et al.  Remarks on a free Boundary Value Problem Arising in Plasma Physics , 1977 .

[18]  Harold Grad,et al.  HYDROMAGNETIC EQUILIBRIA AND FORCE-FREE FIELDS , 1958 .

[19]  Stephen C. Jardin,et al.  A triangular finite element with first-derivative continuity applied to fusion MHD applications , 2004 .

[20]  Matthew MacDonald,et al.  Shapes and Geometries , 1987 .

[21]  Xiao-Chuan Cai,et al.  Overlapping Nonmatching Grid Mortar Element Methods for Elliptic Problems , 1999 .

[22]  Long Chen Programming of Finite Element Methods in MATLAB , 2018 .

[23]  Vitalii D. Shafranov,et al.  Use of the virtual-casing principle in calculating the containing magnetic field in toroidal plasma systems , 1972 .

[24]  J. Blum Numerical simulation and optimal control in plasma physics , 1989 .

[25]  Harold Grad,et al.  Classical Diffusion in a Tokomak , 1970 .

[26]  F. Bogner,et al.  The generation of interelement compatible stiffness and mass matrices by the use of interpolation formulae , 1965 .

[27]  Jonas Koko Vectorized Matlab codes for linear two-dimensional elasticity , 2007, Sci. Program..

[28]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[29]  C. Bernardi,et al.  A New Nonconforming Approach to Domain Decomposition : The Mortar Element Method , 1994 .

[30]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[31]  V. Shafranov On Magnetohydrodynamical Equilibrium Configurations , 1958 .

[32]  C. Schwab P- and hp- finite element methods : theory and applications in solid and fluid mechanics , 1998 .

[33]  Gabriel N. Gatica,et al.  The Uncoupling of Boundary Integral and Finite Element Methods for Nonlinear Boundary Value Problems , 1995 .

[34]  Stefaan Poedts,et al.  Principles of Magnetohydrodynamics: With Applications to Laboratory and Astrophysical Plasmas , 2004 .

[35]  Gilles Scarella,et al.  An efficient way to assemble finite element matrices in vector languages , 2014, BIT Numerical Mathematics.

[36]  Stephen C. Jardin,et al.  Computational Methods in Plasma Physics , 2010 .

[37]  B. I. WOHLMUTHyAbstra A DOMAIN DECOMPOSITION METHOD ON NESTED DOMAINS AND NONMATCHING GRIDS , 2003 .

[38]  Houssem Haddar,et al.  Axisymmetric eddy current inspection of highly conducting thin layers via asymptotic models , 2015 .

[39]  A. Bondeson,et al.  Axisymmetric MHD equilibrium solver with bicubic Hermite elements , 1992 .

[40]  Rony Keppens,et al.  Advanced Magnetohydrodynamics: With Applications to Laboratory and Astrophysical Plasmas , 2010 .

[41]  J. Blum,et al.  Existence and control of plasma equilibrium in a Tokamak , 1986 .

[42]  G. Karniadakis,et al.  Spectral/hp Element Methods for Computational Fluid Dynamics , 2005 .

[43]  R. Lüst,et al.  Axialsymmetrische magnetohydrodynamische Gleichgewichtskonfigurationen , 1957 .

[44]  J. P. Goedbloed Conformal mapping methods in two-dimensional magnetohydrodynamics , 1981 .

[45]  Barbara I. Wohlmuth,et al.  Discretization Methods and Iterative Solvers Based on Domain Decomposition , 2001, Lecture Notes in Computational Science and Engineering.

[46]  Martine Baelmans,et al.  Towards Automated Magnetic Divertor Design for Optimal Heat Exhaust , 2016 .

[47]  D. Ryutov Geometrical properties of a “snowflake” divertor , 2007 .

[48]  L. L. LoDestro,et al.  CORSICA: A comprehensive simulation of toroidal magnetic-fusion devices. Final report to the LDRD Program , 1997 .

[49]  F. Murat,et al.  Sur le controle par un domaine géométrique , 1976 .

[50]  Carl R. Sovinec,et al.  Solving the Grad-Shafranov equation with spectral elements , 2014, Comput. Phys. Commun..

[51]  Leslie Greengard,et al.  A fast, high-order solver for the Grad-Shafranov equation , 2012, J. Comput. Phys..

[52]  Maciej Paszyński,et al.  Computing with hp-ADAPTIVE FINITE ELEMENTS: Volume II Frontiers: Three Dimensional Elliptic and Maxwell Problems with Applications , 2007 .

[53]  Virginie Grandgirard,et al.  Modelisation de l'equilibre d'un plasma de tokamak , 1999 .

[54]  Mitsuru Honda,et al.  Simulation technique of free-boundary equilibrium evolution in plasma ramp-up phase , 2010, Comput. Phys. Commun..

[55]  Martine Baelmans,et al.  A novel approach to magnetic divertor configuration design , 2014 .

[56]  R. R. Khayrutdinov,et al.  Studies of plasma equilibrium and transport in a Tokamak fusion device with the inverse-variable technique , 1993 .

[57]  Sylvain Brémond,et al.  Quasi-static free-boundary equilibrium of toroidal plasma with CEDRES++: Computational methods and applications , 2015 .

[58]  Frédéric Hecht,et al.  Numerical Zoom and the Schwarz Algorithm , 2009 .