A survey of the use of cellular automata and cellular automata-like models for simulating a population of biological cells

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi CHAPTER 1. A survey of mathematical modeling in biology . . . . . . . . . 1 1.

[1]  Antonio Bru,et al.  Mathematical Modeling of Tuberculosis Bacillary Counts and Cellular Populations in the Organs of Infected Mice , 2010, PloS one.

[2]  Yi Jiang,et al.  A cell-based model exhibiting branching and anastomosis during tumor-induced angiogenesis. , 2007, Biophysical journal.

[3]  Glazier,et al.  Simulation of biological cell sorting using a two-dimensional extended Potts model. , 1992, Physical review letters.

[4]  C. Lo,et al.  Stochastic Gompertz model of tumour cell growth. , 2007, Journal of theoretical biology.

[5]  S. Shazer Inside and Outside , 2005 .

[6]  Matthias K. Gobbert,et al.  Modeling the Spread of Epidemic Cholera: an Age-Structured Model , 2007 .

[7]  Andreas Deutsch,et al.  Pigment pattern formation in zebrafish during late larval stages: A model based on local interactions , 2005, Developmental dynamics : an official publication of the American Association of Anatomists.

[8]  Elizabeth S. Allman,et al.  Mathematical Models in Biology: Genetics , 2003 .

[9]  Kazunori Nakajima,et al.  Computational cell model based on autonomous cell movement regulated by cell-cell signalling successfully recapitulates the "inside and outside" pattern of cell sorting , 2007, BMC Systems Biology.

[10]  Leah Edelstein-Keshet,et al.  Mathematical models in biology , 2005, Classics in applied mathematics.

[11]  A. Anderson,et al.  A hybrid mathematical model of solid tumour invasion: the importance of cell adhesion , 2005 .

[12]  Karel Culik,et al.  Undecidability of CA Classification Schemes , 1988, Complex Syst..

[13]  M. L. Martins,et al.  A cellular automata model for cell differentiation , 2003 .

[14]  Zhihui Wang,et al.  Multiscale agent-based cancer modeling , 2009, Journal of mathematical biology.

[15]  Yi Jiang,et al.  Topography of Extracellular Matrix Mediates Vascular Morphogenesis and Migration Speeds in Angiogenesis , 2009, PLoS Comput. Biol..

[16]  M H Pope,et al.  Concepts in mathematical modeling. , 1991, Spine.

[17]  Maarten C. Boerlijst,et al.  Cellular Automaton Modeling of Pattern Formation , 2006 .

[18]  Roeland M. H. Merks,et al.  A cell-centered approach to developmental biology , 2005 .

[19]  Robert A. Gatenby,et al.  Cellular automaton model of tumor growth , 1998 .

[20]  G. Forgacs,et al.  Surface tensions of embryonic tissues predict their mutual envelopment behavior. , 1996, Development.

[21]  Master Gardener,et al.  Mathematical games: the fantastic combinations of john conway's new solitaire game "life , 1970 .

[22]  A. Anderson,et al.  Front Instabilities and Invasiveness of Simulated Avascular Tumors , 2009, Bulletin of mathematical biology.

[23]  X. Zheng,et al.  A cellular automaton model of cancerous growth. , 1993, Journal of theoretical biology.

[24]  J. Glazier,et al.  Front Instabilities and Invasiveness of Simulated 3D Avascular Tumors , 2009, PloS one.

[25]  M. S. Steinberg,et al.  Adhesion-guided multicellular assembly: a commentary upon the postulates, real and imagined, of the differential adhesion hypothesis, with special attention to computer simulations of cell sorting. , 1975, Journal of theoretical biology.

[26]  J. Glazier,et al.  3D Multi-Cell Simulation of Tumor Growth and Angiogenesis , 2009, PloS one.

[27]  L. Schulman,et al.  Statistical mechanics of a dynamical system based on Conway's game of Life , 1978 .

[28]  Thomas S Deisboeck,et al.  Emerging patterns in tumor systems: simulating the dynamics of multicellular clusters with an agent-based spatial agglomeration model. , 2002, Journal of theoretical biology.

[29]  The Metropolis Algorithm Statistical Systems and Simulated Annealing , .