Stability for vertex isoperimetry in the cube
暂无分享,去创建一个
[1] Andrey Kupavskii,et al. Regular bipartite graphs and intersecting families , 2018, J. Comb. Theory, Ser. A.
[2] Ehud Friedgut,et al. Boolean Functions With Low Average Sensitivity Depend On Few Coordinates , 1998, Comb..
[3] Peter Keevash,et al. Shadows and intersections: Stability and new proofs , 2008, 0806.2023.
[4] Nathan Keller,et al. Stability versions of Erdős–Ko–Rado type theorems via isoperimetry , 2019, Journal of the European Mathematical Society.
[5] Ehud Friedgut,et al. On the measure of intersecting families, uniqueness and stability , 2008, Comb..
[6] Zoltán Füredi,et al. A short proof for a theorem of Harper about Hamming-spheres , 1981, Discret. Math..
[7] Nathan Keller,et al. Approximation of biased Boolean functions of small total influence by DNFs , 2017, ArXiv.
[8] L. H. Harper. Optimal numberings and isoperimetric problems on graphs , 1966 .
[9] Michael Mörs,et al. A generalization of a theorem of Kruskal , 1985, Graphs Comb..
[10] L. Lovász. Combinatorial problems and exercises , 1979 .
[11] Peter Frankl,et al. Erdös-Ko-Rado theorem with conditions on the maximal degree , 1987, J. Comb. Theory, Ser. A.
[12] Peter Frankl,et al. Families with no s pairwise disjoint sets , 2017, J. Lond. Math. Soc..
[13] Peter Frankl,et al. Improved bounds for Erdős' Matching Conjecture , 2013, J. Comb. Theory, Ser. A.
[14] Béla Bollobás,et al. On the stability of the Erdős-Ko-Rado theorem , 2016, J. Comb. Theory, Ser. A.
[15] P. Erdos. A PROBLEM ON INDEPENDENT r-TUPLES , 1965 .
[16] Zoltán Füredi,et al. Families of finite sets with minimum shadows , 1986, Comb..
[17] Ryan O'Donnell,et al. KKL, Kruskal-Katona, and Monotone Nets , 2013, SIAM J. Comput..
[18] Béla Bollobás,et al. Compressions and isoperimetric inequalities , 1990, J. Comb. Theory, Ser. A.
[19] David E. Daykin,et al. A Simple Proof of the Kruskal-Katona Theorem , 1974, J. Comb. Theory, Ser. A.
[20] Peter Frankl. A lower bound on the size of a complex generated by an antichain , 1989, Discret. Math..
[21] Uniqueness in Harper’s vertex-isoperimetric theorem , 2018, 1806.11061.
[22] Alexander Roberts,et al. Vertex-isoperimetric stability in the hypercube , 2020, J. Comb. Theory, Ser. A.
[23] David Ellis. Almost Isoperimetric Subsets of the Discrete Cube , 2011, Comb. Probab. Comput..
[24] G. Katona. A theorem of finite sets , 2009 .
[25] Nathan Keller,et al. On the structure of subsets of the discrete cube with small edge boundary , 2018, Discrete Analysis.
[26] P. Erdös,et al. INTERSECTION THEOREMS FOR SYSTEMS OF FINITE SETS , 1961 .
[27] David E. Daykin. Erdös-Ko-Rado from Kruskal-Katona , 1974, J. Comb. Theory, Ser. A.
[28] Peter Keevash,et al. A stability result for the cube edge isoperimetric inequality , 2017, J. Comb. Theory, Ser. A.
[29] Shagnik Das,et al. Removal and Stability for Erdös-Ko-Rado , 2016, SIAM J. Discret. Math..
[30] Norihide Tokushige,et al. Minimum Shadows in Uniform Hypergraphs and a Generalization of the Takagi Function , 1995, J. Comb. Theory, Ser. A.
[31] Nathan Linial,et al. The influence of variables on Boolean functions , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.