Stability for vertex isoperimetry in the cube

We prove a stability version of Harper's cube vertex isoperimetric inequality, showing that subsets of the cube with vertex boundary close to the minimum possible are close to (generalised) Hamming balls. Furthermore, we obtain a local stability result for ball-like sets that gives a sharp estimate for the vertex boundary in terms of the distance from a ball, and so our stability result is essentially tight (modulo a non-monotonicity phenomenon). We also give similar results for the Kruskal--Katona Theorem and applications to new stability versions of some other results in Extremal Combinatorics.

[1]  Andrey Kupavskii,et al.  Regular bipartite graphs and intersecting families , 2018, J. Comb. Theory, Ser. A.

[2]  Ehud Friedgut,et al.  Boolean Functions With Low Average Sensitivity Depend On Few Coordinates , 1998, Comb..

[3]  Peter Keevash,et al.  Shadows and intersections: Stability and new proofs , 2008, 0806.2023.

[4]  Nathan Keller,et al.  Stability versions of Erdős–Ko–Rado type theorems via isoperimetry , 2019, Journal of the European Mathematical Society.

[5]  Ehud Friedgut,et al.  On the measure of intersecting families, uniqueness and stability , 2008, Comb..

[6]  Zoltán Füredi,et al.  A short proof for a theorem of Harper about Hamming-spheres , 1981, Discret. Math..

[7]  Nathan Keller,et al.  Approximation of biased Boolean functions of small total influence by DNFs , 2017, ArXiv.

[8]  L. H. Harper Optimal numberings and isoperimetric problems on graphs , 1966 .

[9]  Michael Mörs,et al.  A generalization of a theorem of Kruskal , 1985, Graphs Comb..

[10]  L. Lovász Combinatorial problems and exercises , 1979 .

[11]  Peter Frankl,et al.  Erdös-Ko-Rado theorem with conditions on the maximal degree , 1987, J. Comb. Theory, Ser. A.

[12]  Peter Frankl,et al.  Families with no s pairwise disjoint sets , 2017, J. Lond. Math. Soc..

[13]  Peter Frankl,et al.  Improved bounds for Erdős' Matching Conjecture , 2013, J. Comb. Theory, Ser. A.

[14]  Béla Bollobás,et al.  On the stability of the Erdős-Ko-Rado theorem , 2016, J. Comb. Theory, Ser. A.

[15]  P. Erdos A PROBLEM ON INDEPENDENT r-TUPLES , 1965 .

[16]  Zoltán Füredi,et al.  Families of finite sets with minimum shadows , 1986, Comb..

[17]  Ryan O'Donnell,et al.  KKL, Kruskal-Katona, and Monotone Nets , 2013, SIAM J. Comput..

[18]  Béla Bollobás,et al.  Compressions and isoperimetric inequalities , 1990, J. Comb. Theory, Ser. A.

[19]  David E. Daykin,et al.  A Simple Proof of the Kruskal-Katona Theorem , 1974, J. Comb. Theory, Ser. A.

[20]  Peter Frankl A lower bound on the size of a complex generated by an antichain , 1989, Discret. Math..

[21]  Uniqueness in Harper’s vertex-isoperimetric theorem , 2018, 1806.11061.

[22]  Alexander Roberts,et al.  Vertex-isoperimetric stability in the hypercube , 2020, J. Comb. Theory, Ser. A.

[23]  David Ellis Almost Isoperimetric Subsets of the Discrete Cube , 2011, Comb. Probab. Comput..

[24]  G. Katona A theorem of finite sets , 2009 .

[25]  Nathan Keller,et al.  On the structure of subsets of the discrete cube with small edge boundary , 2018, Discrete Analysis.

[26]  P. Erdös,et al.  INTERSECTION THEOREMS FOR SYSTEMS OF FINITE SETS , 1961 .

[27]  David E. Daykin Erdös-Ko-Rado from Kruskal-Katona , 1974, J. Comb. Theory, Ser. A.

[28]  Peter Keevash,et al.  A stability result for the cube edge isoperimetric inequality , 2017, J. Comb. Theory, Ser. A.

[29]  Shagnik Das,et al.  Removal and Stability for Erdös-Ko-Rado , 2016, SIAM J. Discret. Math..

[30]  Norihide Tokushige,et al.  Minimum Shadows in Uniform Hypergraphs and a Generalization of the Takagi Function , 1995, J. Comb. Theory, Ser. A.

[31]  Nathan Linial,et al.  The influence of variables on Boolean functions , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.