Semi-parametric optimization for missing data imputation
暂无分享,去创建一个
Chengqi Zhang | Xiaofeng Zhu | Shichao Zhang | Jilian Zhang | Yongsong Qin | Chengqi Zhang | Xiaofeng Zhu | Shichao Zhang | Jilian Zhang | Yongsong Qin
[1] John A. List,et al. The Environmental Kuznets Curve: Real Progress or Misspecified Models? , 2003, Review of Economics and Statistics.
[2] David J. Hand,et al. A Handbook of Small Data Sets , 1993 .
[3] Geoffrey I. Webb,et al. Identifying Approximate Itemsets of Interest in Large Databases , 2004, Applied Intelligence.
[4] Roderick J. A. Little,et al. Statistical Analysis with Missing Data: Little/Statistical Analysis with Missing Data , 2002 .
[5] Pin T. Ng,et al. The Elasticity of Demand for Gasoline: A Semi-parametric Analysis , 2002 .
[6] C. D. Kemp,et al. Density Estimation for Statistics and Data Analysis , 1987 .
[7] Roderick J. A. Little,et al. Statistical Analysis with Missing Data , 1988 .
[8] Chris Clifton. Change Detection in Overhead Imagery Using Neural Networks , 2004, Applied Intelligence.
[9] Chengqi Zhang,et al. Optimized parameters for missing data imputation , 2006 .
[10] A. A. Weiss,et al. Semiparametric estimates of the relation between weather and electricity sales , 1986 .
[11] J. Ross Quinlan,et al. Unknown Attribute Values in Induction , 1989, ML.
[12] Shichao Zhang,et al. "Missing is useful": missing values in cost-sensitive decision trees , 2005, IEEE Transactions on Knowledge and Data Engineering.
[13] J. Ross Quinlan,et al. C4.5: Programs for Machine Learning , 1992 .
[14] Lasse Holmström,et al. A semiparametric density estimation approach to pattern classification , 2004, Pattern Recognit..
[15] Lukasz Kurgan,et al. Trends in Data Mining and Knowledge Discovery , 2005 .
[16] S. Hanson,et al. Mixture Models for Learning from Incomplete Data , 1997 .
[17] Russell Greiner,et al. Computational learning theory and natural learning systems: Volume IV: making learning systems practical , 1997, COLT 1997.
[18] Paola Sebastiani,et al. Learning Bayesian Networks from Incomplete Databases , 1997, UAI.
[19] J. N. K. Rao,et al. Empirical Likelihood‐based Inference in Linear Models with Missing Data , 2002 .
[20] Ron Kohavi,et al. Lazy Decision Trees , 1996, AAAI/IAAI, Vol. 1.
[21] Max Bramer,et al. Techniques for Dealing with Missing Values in Classification , 1997, IDA.
[22] J. N. K. Rao,et al. Empirical likelihood-based inference under imputation for missing response data , 2002 .
[23] John L.P. Thompson,et al. Missing data , 2004, Amyotrophic lateral sclerosis and other motor neuron disorders : official publication of the World Federation of Neurology, Research Group on Motor Neuron Diseases.
[24] Petra Perner,et al. Data Mining - Concepts and Techniques , 2002, Künstliche Intell..
[25] C. Anderson‐Cook,et al. Robust Parameter Design: A Semi-Parametric Approach , 2005 .
[26] Chengqi Zhang,et al. Guest Editors' Introduction: Information Enhancement for Data Mining , 2004, IEEE Intell. Syst..
[27] Ingram Olkin,et al. Incomplete data in sample surveys. Vol. 1: report and case studies , 1983 .
[28] Xiaohua Hu,et al. A Data Mining Approach for Retailing Bank Customer Attrition Analysis , 2004, Applied Intelligence.
[29] Dorian Pyle,et al. Data Preparation for Data Mining , 1999 .
[30] Reda Alhajj,et al. Utilizing Genetic Algorithms to Optimize Membership Functions for Fuzzy Weighted Association Rules Mining , 2006, Applied Intelligence.
[31] Oliver Linton,et al. Semiparametric Regression Analysis With Missing Response at Random , 2003 .
[32] Søren Feodor Nielsen,et al. 1. Statistical Analysis with Missing Data (2nd edn). Roderick J. Little and Donald B. Rubin, John Wiley & Sons, New York, 2002. No. of pages: xv+381. ISBN: 0‐471‐18386‐5 , 2004 .
[33] J. Peixoto. A Property of Well-Formulated Polynomial Regression Models , 1990 .
[34] Chengqi Zhang,et al. Guest Editors' Introduction: Special Section on Intelligent Data Preparation , 2005, IEEE Trans. Knowl. Data Eng..
[35] A. P. White,et al. Probabilistic induction by dynamic part generation in virtual trees , 1987 .