Maximum likelihood estimation of SNR using digitally modulated signals

The problem of estimating two measures of signal-to-noise ratio (SNR) is investigated, both for static and slowly fading channels without memory. Maximum likelihood SNR estimators that use digitally modulated signals are derived for sampled signal processing receivers as well as continuous time signal processing receivers. The performances of the estimators are examined analytically in terms of biases and root-mean-squared errors. Numerical results are presented to show their good performances

[1]  Athanasios Papoulis,et al.  Probability, random variables, and stochastic processes , 2002 .

[2]  S. Rice Mathematical analysis of random noise , 1944 .

[3]  M. Melamed Detection , 2021, SETI: Astronomy as a Contact Sport.

[4]  Theodore S. Rappaport,et al.  Wireless communications - principles and practice , 1996 .

[5]  T. Parks Signal processing: Discrete spectral analysis, detection, and estimation , 1976, Proceedings of the IEEE.

[6]  R. Gagliardi,et al.  PCM Data Reliability Monitoring Through Estimation of Signal-to-Noise Ratio , 1968 .

[7]  Morton I. Schwartz Distribution of the time-average power of a Gaussian process , 1970, IEEE Trans. Inf. Theory.

[8]  Mischa Schwartz,et al.  Signal Processing: Discrete Spectral Analysis, Detection, and Estimation , 1975 .

[9]  Sailes K. Sengijpta Fundamentals of Statistical Signal Processing: Estimation Theory , 1995 .

[10]  Nader Sheikholeslami Alagha,et al.  Cramer-Rao bounds of SNR estimates for BPSK and QPSK modulated signals , 2001, IEEE Communications Letters.

[11]  Susumu Yoshida,et al.  Simple method of multipath delay difference detection for pi /4-shift QPSK , 1991 .

[12]  Norman C. Beaulieu,et al.  Comparison of four SNR estimators for QPSK modulations , 2000, IEEE Communications Letters.

[13]  Krishna Balachandran,et al.  Channel quality estimation and rate adaptation for cellular mobile radio , 1999, IEEE J. Sel. Areas Commun..

[14]  Norman C. Beaulieu,et al.  A comparison of SNR estimation techniques for the AWGN channel , 2000, IEEE Trans. Commun..

[15]  N. L. Johnson,et al.  Continuous Univariate Distributions.Vol. 1@@@Continuous Univariate Distributions.Vol. 2 , 1995 .

[16]  W. Rudin Real and complex analysis , 1968 .

[17]  Jens Zander,et al.  Performance of optimum transmitter power control in cellular radio systems , 1992 .

[18]  D. G. Brennan,et al.  Linear diversity combining techniques , 2003 .

[19]  Bruno O. Shubert,et al.  Random variables and stochastic processes , 1979 .

[20]  R. Kerr On Signal and Noise Level Estimation in a Coherent PCM Channel , 1966, IEEE Transactions on Aerospace and Electronic Systems.

[21]  N. Beaulieu Closed-form approximation to PDF of time-average power of bandlimited Gaussian process , 1996 .

[22]  Aarnout Brombacher,et al.  Probability... , 2009, Qual. Reliab. Eng. Int..

[23]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[24]  N. L. Johnson,et al.  Continuous Univariate Distributions. , 1995 .

[25]  Bin Li,et al.  A low bias algorithm to estimate negative SNRs in an AWGN channel , 2002, IEEE Communications Letters.

[26]  Ami Wiesel,et al.  Data-Aided Signal-to-Noise-Ratio estimation in time selective fading channels , 2002, 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[27]  Norman C. Beaulieu,et al.  On the Performance of Three Suboptimum Detection Schemes for Binary Signaling , 1985, IEEE Trans. Commun..

[28]  Ami Wiesel,et al.  Non-data-aided signal-to-noise-ratio estimation , 2002, 2002 IEEE International Conference on Communications. Conference Proceedings. ICC 2002 (Cat. No.02CH37333).

[29]  H. Vincent Poor,et al.  An Introduction to Signal Detection and Estimation , 1994, Springer Texts in Electrical Engineering.