Trigonometrically fitted block Numerov type method for y′′ = f(x, y, y′)
暂无分享,去创建一个
[1] B. P. Sommeijer,et al. Explicit, high-order Runge-Kutta-Nystro¨m methods for parallel computers , 1993 .
[2] Higinio Ramos,et al. Dissipative Chebyshev exponential-fitted methods for numerical solution of second-order differential equations , 2003 .
[3] J. Butcher. The numerical analysis of ordinary differential equations: Runge-Kutta and general linear methods , 1987 .
[4] C. W. Gear,et al. The analysis of generalized backwards difference formula methods applied to Hessenberg from differential-algebraic equations , 1991 .
[5] Ch. Tsitouras. EXPLICIT EIGHTH ORDER TWO-STEP METHODS WITH NINE STAGES FOR INTEGRATING OSCILLATORY PROBLEMS , 2006 .
[6] J. Vigo-Aguiar,et al. Variable stepsize implementation of multistep methods for y' ' = f ( x, y, y' ) , 2006 .
[7] J. M. Franco. Runge–Kutta–Nyström methods adapted to the numerical integration of perturbed oscillators , 2002 .
[8] S. Jator. A SIXTH ORDER LINEAR MULTISTEP METHOD FOR THE DIRECT SOLUTION OF y ′ ′ = f ( x , y , y ′ ) , 2011 .
[9] Higinio Ramos,et al. Variable stepsize störmer-cowell methods , 2005, Math. Comput. Model..
[10] Jiang Li,et al. A self-starting linear multistep method for a direct solution of the general second-order initial value problem , 2009, Int. J. Comput. Math..
[11] Kazufumi Ozawa. A functionally fitted three-stage explicit singly diagonally implicit Runge-Kutta method , 2005 .
[12] L. Brugnano,et al. Solving differential problems by multistep initial and boundary value methods , 1998 .
[13] J. Lambert. Computational Methods in Ordinary Differential Equations , 1973 .
[14] D. O. Awoyemi,et al. A new sixth-order algorithm for general second order ordinary differential equations , 2001, Int. J. Comput. Math..
[15] E. Hairer,et al. A theory for Nyström methods , 1975 .
[16] Liviu Gr. Ixaru,et al. P-stability and exponential-fitting methods for y″″ = f(x, y) , 1996 .
[17] H. A. Watts,et al. Block Implicit One-Step Methods* , 1969 .
[18] John P. Coleman,et al. Mixed collocation methods for y ′′ =f x,y , 2000 .
[19] Simeon Ola Fatunla,et al. A class of block methods for second order IVPs , 1995, Int. J. Comput. Math..
[20] P. Onumanyi,et al. Continuous finite difference approximations for solving differential equations , 1999, Int. J. Comput. Math..
[21] J. Barkley Rosser,et al. A Runge-Kutta for all Seasons , 1967 .
[22] Samuel N. Jator,et al. Solving second order initial value problems by a hybrid multistep method without predictors , 2010, Appl. Math. Comput..
[23] Ernst Hairer. Méthodes de Nyström pour l'équation différentielley″=f(x, y) , 1976 .
[24] Simeon Ola Fatunla,et al. Block methods for second order odes , 1991, Int. J. Comput. Math..
[25] J. Lambert,et al. Symmetric Multistip Methods for Periodic Initial Value Problems , 1976 .
[26] T. E. Simos,et al. An exponentially-fitted Runge-Kutta method for the numerical integration of initial-value problems with periodic or oscillating solutions , 1998 .
[27] Beatrice Paternoster,et al. Two-step hybrid collocation methods for y"=f(x, y) , 2009, Appl. Math. Lett..
[28] D. G. Bettis,et al. Stabilization of Cowell's method , 1969 .
[29] M. Rubinoff,et al. Numerical solution of differential equations , 1954, AIEE-IRE '54 (Eastern).
[30] Nguyen Huu Cong,et al. Analysis of trigonometric implicit Runge-Kutta methods , 2007 .