Trigonometrically fitted block Numerov type method for y′′ = f(x, y, y′)

A trigonometrically fitted block Numerov type method (TBNM), is proposed for solving y′′ = f(x, y, y′) directly without reducing it to an equivalent first order system. This is achieved by constructing a continuous representation of the trigonometrically fitted Numerov method (CTNM) and using it to generate the well known trigonometrically fitted Numerov method (TNUM) and three new additional methods, which are combined and applied in block form as simultaneous numerical integrators. The stability property of the TBNM is discussed and the performance of the method is demonstrated on some numerical examples to show accuracy and efficiency advantages.

[1]  B. P. Sommeijer,et al.  Explicit, high-order Runge-Kutta-Nystro¨m methods for parallel computers , 1993 .

[2]  Higinio Ramos,et al.  Dissipative Chebyshev exponential-fitted methods for numerical solution of second-order differential equations , 2003 .

[3]  J. Butcher The numerical analysis of ordinary differential equations: Runge-Kutta and general linear methods , 1987 .

[4]  C. W. Gear,et al.  The analysis of generalized backwards difference formula methods applied to Hessenberg from differential-algebraic equations , 1991 .

[5]  Ch. Tsitouras EXPLICIT EIGHTH ORDER TWO-STEP METHODS WITH NINE STAGES FOR INTEGRATING OSCILLATORY PROBLEMS , 2006 .

[6]  J. Vigo-Aguiar,et al.  Variable stepsize implementation of multistep methods for y' ' = f ( x, y, y' ) , 2006 .

[7]  J. M. Franco Runge–Kutta–Nyström methods adapted to the numerical integration of perturbed oscillators , 2002 .

[8]  S. Jator A SIXTH ORDER LINEAR MULTISTEP METHOD FOR THE DIRECT SOLUTION OF y ′ ′ = f ( x , y , y ′ ) , 2011 .

[9]  Higinio Ramos,et al.  Variable stepsize störmer-cowell methods , 2005, Math. Comput. Model..

[10]  Jiang Li,et al.  A self-starting linear multistep method for a direct solution of the general second-order initial value problem , 2009, Int. J. Comput. Math..

[11]  Kazufumi Ozawa A functionally fitted three-stage explicit singly diagonally implicit Runge-Kutta method , 2005 .

[12]  L. Brugnano,et al.  Solving differential problems by multistep initial and boundary value methods , 1998 .

[13]  J. Lambert Computational Methods in Ordinary Differential Equations , 1973 .

[14]  D. O. Awoyemi,et al.  A new sixth-order algorithm for general second order ordinary differential equations , 2001, Int. J. Comput. Math..

[15]  E. Hairer,et al.  A theory for Nyström methods , 1975 .

[16]  Liviu Gr. Ixaru,et al.  P-stability and exponential-fitting methods for y″″ = f(x, y) , 1996 .

[17]  H. A. Watts,et al.  Block Implicit One-Step Methods* , 1969 .

[18]  John P. Coleman,et al.  Mixed collocation methods for y ′′ =f x,y , 2000 .

[19]  Simeon Ola Fatunla,et al.  A class of block methods for second order IVPs , 1995, Int. J. Comput. Math..

[20]  P. Onumanyi,et al.  Continuous finite difference approximations for solving differential equations , 1999, Int. J. Comput. Math..

[21]  J. Barkley Rosser,et al.  A Runge-Kutta for all Seasons , 1967 .

[22]  Samuel N. Jator,et al.  Solving second order initial value problems by a hybrid multistep method without predictors , 2010, Appl. Math. Comput..

[23]  Ernst Hairer Méthodes de Nyström pour l'équation différentielley″=f(x, y) , 1976 .

[24]  Simeon Ola Fatunla,et al.  Block methods for second order odes , 1991, Int. J. Comput. Math..

[25]  J. Lambert,et al.  Symmetric Multistip Methods for Periodic Initial Value Problems , 1976 .

[26]  T. E. Simos,et al.  An exponentially-fitted Runge-Kutta method for the numerical integration of initial-value problems with periodic or oscillating solutions , 1998 .

[27]  Beatrice Paternoster,et al.  Two-step hybrid collocation methods for y"=f(x, y) , 2009, Appl. Math. Lett..

[28]  D. G. Bettis,et al.  Stabilization of Cowell's method , 1969 .

[29]  M. Rubinoff,et al.  Numerical solution of differential equations , 1954, AIEE-IRE '54 (Eastern).

[30]  Nguyen Huu Cong,et al.  Analysis of trigonometric implicit Runge-Kutta methods , 2007 .