Some q-analogues of the Schröder numbers arising from combinatorial statistics on lattice paths

Abstract We present enumerative results concerning plane lattice paths starting at the origin, with steps (1,0), (1,1) and (0,1). Such paths with a specified endpoint are counted by the Delannoy numbers, while those paths which in addition do not run above the line y=x are counted by the Schroder numbers. We develop q-analogues of the Delannoy and Schroder numbers derived from several combinatorial statistics: the number of diagonal steps, the area under the path, and the major index. We investigate the symmetry and unimodality of the resulting polynomials, and determine the asymptotic behavior of the expected number of diagonal steps and area under a path. Using the number of diagonal steps statistic, we describe the ƒ-vector of the associahedron in terms of lattice paths counted by the Schroder numbers.

[1]  G. Andrews The Theory of Partitions: Frontmatter , 1976 .

[2]  A. Brøndsted An Introduction to Convex Polytopes , 1982 .

[3]  G. Kreweras Aires des chemins surdiagonaux à étapes obliques permises , 1976 .

[4]  W. J. Thron,et al.  Encyclopedia of Mathematics and its Applications. , 1982 .

[5]  Christian Krattenthaler,et al.  Enumeration of lattice paths and generating functions for skew plane partitions , 1989 .

[6]  Carl W. Lee,et al.  The Associahedron and Triangulations of the n-gon , 1989, Eur. J. Comb..

[7]  Rodica Simion,et al.  On the structure of the lattice of noncrossing partitions , 1991, Discret. Math..

[8]  Philippe Flajolet Combinatorial aspects of continued fractions , 1980, Discret. Math..

[9]  Louis W. Shapiro,et al.  Bootstrap Percolation, the Schröder Numbers, and the N-Kings Problem , 1991, SIAM J. Discret. Math..

[10]  Paul H. Edelman Chain enumeration and non-crossing partitions , 1980, Discret. Math..

[11]  Dominique Gouyou-Beauchamps,et al.  Deux Propriétés Combinatoires Des Nombres De Schröder , 1988, RAIRO Theor. Informatics Appl..

[12]  S. G. Mohanty,et al.  Lattice Path Counting and Applications. , 1980 .

[13]  D. G. Rogers,et al.  Some correspondences involving the schröder numbers and relations , 1978 .

[14]  G. B. Mathews,et al.  Combinatory Analysis. Vol. II , 1915, The Mathematical Gazette.

[15]  Germain Kreweras,et al.  Sur les partitions non croisees d'un cycle , 1972, Discret. Math..

[16]  Dennis Stanton,et al.  Unimodality and Young's lattice , 1990, J. Comb. Theory, Ser. A.

[17]  Paul H. EDELMAN Multichains, non-crossing partitions and trees , 1982, Discret. Math..

[18]  Donald Ervin Knuth,et al.  The Art of Computer Programming , 1968 .

[19]  I. Gessel,et al.  Permutation statistics and partitions , 1979 .