Ensemble learning HMM for motion recognition and retrieval by Isomap dimension reduction
暂无分享,去创建一个
Along with the development of motion capture technique, more and more 3D motion databases become available. In this paper, a novel approach is presented for motion recognition and retrieval based on ensemble HMM (hidden Markov model) learning. Due to the high dimensionality of motion’s features, Isomap nonlinear dimension reduction is used for training data of ensemble HMM learning. For handling new motion data, Isomap is generalized based on the estimation of underlying eigenfunctions. Then each action class is learned with one HMM. Since ensemble learning can effectively enhance supervised learning, ensembles of weak HMM learners are built. Experiment results showed that the approaches are effective for motion data recognition and retrieval.