Analysis of an adaptive Uzawa finite element method for the nonlinear Stokes problem

We design and study an adaptive algorithm for the numerical solution of the stationary nonlinear Stokes problem. The algorithm can be interpreted as a disturbed steepest descent method, which generalizes Uzawa’s method to the nonlinear case. The outer iteration for the pressure is a descent method with fixed step-size. The inner iteration for the velocity consists of an approximate solution of a nonlinear Laplace equation, which is realized with adaptive linear finite elements. The descent direction is motivated by the quasi-norm which naturally arises as distance between velocities. We establish the convergence of the algorithm within the framework of descent direction methods.

[1]  P. Clément Approximation by finite element functions using local regularization , 1975 .

[2]  Christian Kreuzer,et al.  Linear Convergence of an Adaptive Finite Element Method for the p-Laplacian Equation , 2008, SIAM J. Numer. Anal..

[3]  W. B. Liu,et al.  Quasi-norm Error Bounds for the Nite Element Approximation of a Non-newtonian Ow , 1994 .

[4]  R. Temam,et al.  Analyse convexe et problèmes variationnels , 1974 .

[5]  Christian Kreuzer,et al.  Optimality of an adaptive finite element method for the p-Laplacian equation , 2012 .

[6]  Kunibert G. Siebert,et al.  Design of Adaptive Finite Element Software - The Finite Element Toolbox ALBERTA , 2005, Lecture Notes in Computational Science and Engineering.

[7]  E. Süli,et al.  Two-sided a posteriori error bounds for incompressible quasi-Newtonian flows , 2007 .

[8]  Masaaki Kijima,et al.  THEORY AND ALGORITHMS OF , 1988 .

[9]  Joseph M. Maubach,et al.  Local bisection refinement for $n$-simplicial grids generated by reflection , 2017 .

[10]  Kunibert G. Siebert,et al.  A BASIC CONVERGENCE RESULT FOR CONFORMING ADAPTIVE FINITE ELEMENTS , 2008 .

[11]  M. Ruzicka,et al.  Non-Newtonian fluids and function spaces , 2007 .

[12]  J. Rao,et al.  In vitro brain acetylcholinesterase response among three inbred strains of mice to monocrotophos. , 1991, Journal of Environmental Science and Health. Part B - Pesticides, Food Contaminants, and Agricultural Wastes.

[13]  A. Schmidt,et al.  Design of Adaptive Finite Element Software , 2005 .

[14]  Andreas Veeser,et al.  A posteriori error estimators, gradient recovery by averaging, and superconvergence , 2006, Numerische Mathematik.

[15]  Ricardo H. Nochetto,et al.  Convergence of Adaptive Finite Element Methods for General Second Order Linear Elliptic PDEs , 2005, SIAM J. Numer. Anal..

[16]  Kunibert G. Siebert,et al.  A convergence proof for adaptive finite elements without lower bound , 2011 .

[17]  Lars Diening,et al.  Numerische Mathematik Interpolation operators in Orlicz – Sobolev spaces , 2007 .

[18]  I. Ekeland,et al.  Convex analysis and variational problems , 1976 .

[19]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[20]  Lars Diening,et al.  Fractional estimates for non-differentiable elliptic systems with general growth , 2008 .

[21]  Julian Musielak,et al.  Orlicz Spaces and Modular Spaces , 1983 .

[22]  P. G. Ciarlet,et al.  Introduction to Numerical Linear Algebra and Optimisation , 1989 .

[23]  Wenbin Liu,et al.  Finite element error analysis of a quasi-Newtonian flow obeying the Carreau or power law , 1993 .

[24]  Rob P. Stevenson,et al.  An Optimal Adaptive Finite Element Method for the Stokes Problem , 2008, SIAM J. Numer. Anal..

[25]  K. N. Dollman,et al.  - 1 , 1743 .

[26]  V. Girault,et al.  Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension , 1994 .

[27]  William F. Mitchell,et al.  A comparison of adaptive refinement techniques for elliptic problems , 1989, TOMS.

[28]  Christian Kreuzer,et al.  Quasi-Optimal Convergence Rate for an Adaptive Finite Element Method , 2008, SIAM J. Numer. Anal..

[29]  Amy Henderson Squilacote The Paraview Guide , 2008 .

[30]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis: Oden/A Posteriori , 2000 .

[31]  ROB STEVENSON,et al.  The completion of locally refined simplicial partitions created by bisection , 2008, Math. Comput..

[32]  M. Rao,et al.  Theory of Orlicz spaces , 1991 .

[33]  Igor Kossaczký A recursive approach to local mesh refinement in two and three dimensions , 1994 .

[34]  Peter Schlattmann,et al.  Theory and Algorithms , 2009 .

[35]  Monique Dauge,et al.  Stationary Stokes and Navier-Stokes systems on two-or three-dimensional domains with corners , 1989 .

[36]  V. Kokilashvili,et al.  Weighted Inequalities in Lorentz and Orlicz Spaces , 1991 .

[37]  M. Fortin Old and new finite elements for incompressible flows , 1981 .

[38]  Eberhard Bänsch,et al.  Local mesh refinement in 2 and 3 dimensions , 1991, IMPACT Comput. Sci. Eng..

[39]  Ricardo H. Nochetto,et al.  Optimal relaxation parameter for the Uzawa Method , 2004, Numerische Mathematik.

[40]  P. Morin,et al.  CONVERGENCE OF FINITE ELEMENTS ADAPTED FOR WEAKER NORMS , 2007 .

[41]  F. Smithies,et al.  Convex Functions and Orlicz Spaces , 1962, The Mathematical Gazette.

[42]  Lars Diening,et al.  A decomposition technique for John domains , 2010 .

[43]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[44]  Theodore G. Faticoni,et al.  Pure and Applied Mathematics: A Wiley‐Interscience Series of Texts, Monographs and Tracts , 2006 .

[45]  Rob P. Stevenson,et al.  Optimality of a Standard Adaptive Finite Element Method , 2007, Found. Comput. Math..

[46]  Reinhard H Stephan Dahlke Adaptive Wavelet Methods for Saddle Point Problems , 1999 .

[47]  John W. Barrett,et al.  Finite element approximation of the p-Laplacian , 1993 .

[48]  Ricardo H. Nochetto,et al.  An Adaptive Uzawa FEM for the Stokes Problem: Convergence without the Inf-Sup Condition , 2002, SIAM J. Numer. Anal..

[50]  Ricardo H. Nochetto,et al.  Data Oscillation and Convergence of Adaptive FEM , 2000, SIAM J. Numer. Anal..

[51]  Jean E. Roberts,et al.  Mixed and hybrid finite element methods , 1987 .

[52]  Andreas Veeser,et al.  Convergent adaptive finite elements for the nonlinear Laplacian , 2002, Numerische Mathematik.