A Yeast Synthetic Network for In Vivo Assessment of Reverse-Engineering and Modeling Approaches

[1]  D. Stillman,et al.  Both positive and negative regulators of HO transcription are required for mother-cell-specific mating-type switching in yeast , 1987, Cell.

[2]  David Lydall,et al.  The identification of a second cell cycle control on the HO promoter in yeast: Cell cycle regulation of SWI5 nuclear entry , 1990, Cell.

[3]  J. Hegemann,et al.  CPF1, a yeast protein which functions in centromeres and promoters. , 1990, The EMBO journal.

[4]  F. Cross,et al.  A potential positive feedback loop controlling CLN1 and CLN2 gene expression at the start of the yeast cell cycle , 1991, Cell.

[5]  Uttam Surana,et al.  The role of phosphorylation and the CDC28 protein kinase in cell cycle-regulated nuclear import of the S. cerevisiae transcription factor SW15 , 1991, Cell.

[6]  AC Tose Cell , 1993, Cell.

[7]  M. Johnston,et al.  Identifying DNA-Binding Sites and Analyzing DNA-Binding Domains Using a Yeast Selection System , 1993 .

[8]  K. O’Connell,et al.  Role of the Saccharomyces cerevisiae general regulatory factor CP1 in methionine biosynthetic gene transcription , 1995, Molecular and cellular biology.

[9]  Dominique Thomas,et al.  Identification of the yeast methionine biosynthetic genes that require the centromere binding factor 1 for their transcriptional activation , 1995, FEBS letters.

[10]  K. Nasmyth,et al.  Mother Cell–Specific HO Expression in Budding Yeast Depends on the Unconventional Myosin Myo4p and Other Cytoplasmic Proteins , 1996, Cell.

[11]  Kim Nasmyth,et al.  Asymmetric Accumulation of Ash1p in Postanaphase Nuclei Depends on a Myosin and Restricts Yeast Mating-Type Switching to Mother Cells , 1996, Cell.

[12]  P. Philippsen,et al.  Heterologous HIS3 Marker and GFP Reporter Modules for PCR‐Targeting in Saccharomyces cerevisiae , 1997, Yeast.

[13]  K. Nasmyth,et al.  Mating type switching in yeast controlled by asymmetric localization of ASH1 mRNA. , 1997, Science.

[14]  J. Hopper,et al.  Novel Gal3 proteins showing altered Gal80p binding cause constitutive transcription of Gal4p-activated genes in Saccharomyces cerevisiae , 1997, Molecular and cellular biology.

[15]  M. Tyers,et al.  The phosphatase Cdc14 triggers mitotic exit by reversal of Cdk-dependent phosphorylation. , 1998, Molecular cell.

[16]  J. Mccusker,et al.  Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae , 1999, Yeast.

[17]  K. Nasmyth,et al.  Ordered Recruitment of Transcription and Chromatin Remodeling Factors to a Cell Cycle– and Developmentally Regulated Promoter , 2016, Cell.

[18]  K. Nasmyth,et al.  Ordered recruitment of transcription and chromatin remodeling factors to a cell cycle- and developmentally regulated promoter. , 1999, Cell.

[19]  J. Collins,et al.  Construction of a genetic toggle switch in Escherichia coli , 2000, Nature.

[20]  I S Kohane,et al.  Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements. , 1999, Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing.

[21]  G. Jona,et al.  Glucose starvation induces a drastic reduction in the rates of both transcription and degradation of mRNA in yeast. , 2000, Biochimica et biophysica acta.

[22]  D. Stillman,et al.  The Swi5 activator recruits the Mediator complex to the HO promoter without RNA polymerase II. , 2001, Genes & development.

[23]  Jeff Hasty,et al.  Engineered gene circuits , 2002, Nature.

[24]  Carsten O. Daub,et al.  The mutual information: Detecting and evaluating dependencies between variables , 2002, ECCB.

[25]  Nicola J. Rinaldi,et al.  Transcriptional Regulatory Networks in Saccharomyces cerevisiae , 2002, Science.

[26]  M. Ehrenberg,et al.  Kinetic properties of rrn promoters in Escherichia coli. , 2002, Biochimie.

[27]  J. Hegemann,et al.  A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast. , 2002, Nucleic acids research.

[28]  M. Cosma Ordered recruitment: gene-specific mechanism of transcription activation. , 2002, Molecular cell.

[29]  Mads Kaern,et al.  The engineering of gene regulatory networks. , 2003, Annual review of biomedical engineering.

[30]  J. Collins,et al.  Inferring Genetic Networks and Identifying Compound Mode of Action via Expression Profiling , 2003, Science.

[31]  Graydon B. Gonsalvez,et al.  RNA-protein interactions promote asymmetric sorting of the ASH1 mRNA ribonucleoprotein complex. , 2003, RNA.

[32]  Jay D. Keasling,et al.  Metabolic engineering for drug discovery and development , 2003, Nature Reviews Drug Discovery.

[33]  Carmen G. Moles,et al.  Parameter estimation in biochemical pathways: a comparison of global optimization methods. , 2003, Genome research.

[34]  M. Cosma Daughter‐specific repression of Saccharomyces cerevisiae HO: Ash1 is the commander , 2004, EMBO reports.

[35]  Edmund J. Crampin,et al.  Extracting Biochemical Reaction Kinetics from Time Series Data , 2004, KES.

[36]  Paul P. Wang,et al.  Advances to Bayesian network inference for generating causal networks from observational biological data , 2004, Bioinform..

[37]  J. Mellor,et al.  Cbf1p modulates chromatin structure, transcription and repair at the Saccharomyces cerevisiae MET16 locus. , 2004, Nucleic acids research.

[38]  Adam A. Margolin,et al.  Reverse engineering of regulatory networks in human B cells , 2005, Nature Genetics.

[39]  P. Swain,et al.  Gene Regulation at the Single-Cell Level , 2005, Science.

[40]  M. Elowitz,et al.  Reconstruction of genetic circuits , 2005, Nature.

[41]  J. Collins,et al.  Chemogenomic profiling on a genome-wide scale using reverse-engineered gene networks , 2005, Nature Biotechnology.

[42]  K. Shokat,et al.  The F Box Protein Dsg1/Mdm30 Is a Transcriptional Coactivator that Stimulates Gal4 Turnover and Cotranscriptional mRNA Processing , 2005, Cell.

[43]  Diego di Bernardo,et al.  Inference of gene regulatory networks and compound mode of action from time course gene expression profiles , 2006, Bioinform..

[44]  Timothy S. Ham,et al.  Production of the antimalarial drug precursor artemisinic acid in engineered yeast , 2006, Nature.

[45]  Vipul Periwal,et al.  System Modeling in Cellular Biology: From Concepts to Nuts and Bolts , 2006 .

[46]  Barbara Di Ventura,et al.  From in vivo to in silico biology and back , 2006, Nature.

[47]  T. Kodadek,et al.  Proteolytic turnover of the Gal4 transcription factor is not required for function in vivo , 2006, Nature.

[48]  A. Traven,et al.  Yeast Gal4: a transcriptional paradigm revisited , 2006, EMBO reports.

[49]  Chris Wiggins,et al.  ARACNE: An Algorithm for the Reconstruction of Gene Regulatory Networks in a Mammalian Cellular Context , 2004, BMC Bioinformatics.

[50]  J. Collins,et al.  Large-Scale Mapping and Validation of Escherichia coli Transcriptional Regulation from a Compendium of Expression Profiles , 2007, PLoS biology.

[51]  J. Collins,et al.  Size matters: network inference tackles the genome scale , 2007, Molecular systems biology.

[52]  S. Lindquist,et al.  A suite of Gateway® cloning vectors for high‐throughput genetic analysis in Saccharomyces cerevisiae , 2007, Yeast.

[53]  F. Bruggeman,et al.  Introduction to systems biology. , 2007, EXS.

[54]  D di Bernardo,et al.  Inference of gene networks from temporal gene expression profiles. , 2007, IET systems biology.

[55]  A. Califano,et al.  Dialogue on Reverse‐Engineering Assessment and Methods , 2007, Annals of the New York Academy of Sciences.

[56]  J. Lieb,et al.  Forkhead proteins control the outcome of transcription factor binding by antiactivation , 2007, The EMBO journal.

[57]  D. di Bernardo,et al.  How to infer gene networks from expression profiles , 2007, Molecular systems biology.

[58]  D. di Bernardo,et al.  Direct targets of the TRP63 transcription factor revealed by a combination of gene expression profiling and reverse engineering. , 2008, Genome research.