Improving the response of a wheel speed sensor using an adaptive line enhancer

In this paper, an Adaptive Line Enhancer (ALE) based on a Frequency-Domain Least-Mean-Square (FDLMS) adaptive algorithm is used to predict the response of a wheel speed sensor embedded in a car undergoing performance tests. In this case, an ALE is used to predict a signal buried in a broad-band noise background where we have little or no prior knowledge of the signal or noise characteristics. The results of the experiment show that this device behaves as an adaptive notch filter whose null points are determined by the frequency of the noise and/or interference corrupting the electrical signal, and these also show a significant improvement in the signal-to-noise ratio at the system output.

[1]  Peter Elgar,et al.  Sensors for Measurement and Control , 1998 .

[2]  Bernard Widrow,et al.  Adaptive Signal Processing , 1985 .

[3]  J. Doyle,et al.  Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.

[4]  J. Shynk Frequency-domain and multirate adaptive filtering , 1992, IEEE Signal Processing Magazine.

[5]  S. Mitra,et al.  A unified approach to time- and frequency-domain realization of FIR adaptive digital filters , 1983 .

[6]  Wilmar Hernandez,et al.  Improving the Responses of Several Accelerometers Used in a Car Under Performance Tests by Using Kalman Filtering , 2001 .

[7]  Victor Solo,et al.  The stability of LMS , 1997, IEEE Trans. Signal Process..

[8]  Ali H. Sayed,et al.  H∞ optimality of the LMS algorithm , 1996, IEEE Trans. Signal Process..

[9]  S. Haykin,et al.  Adaptive Filter Theory , 1986 .

[10]  Kenneth Rose,et al.  Mixture of experts regression modeling by deterministic annealing , 1997, IEEE Trans. Signal Process..

[11]  M. Rupp Bursting in the LMS algorithm , 1995, IEEE Trans. Signal Process..

[12]  Thomas Kailath,et al.  Performance analysis of the adaptive line enhancer for sinusoidal signals in broad-band noise , 1988, IEEE Trans. Acoust. Speech Signal Process..

[13]  John J. Shynk,et al.  Analysis of the momentum LMS algorithm , 1990, IEEE Trans. Acoust. Speech Signal Process..

[14]  Markus Rupp,et al.  The behavior of LMS and NLMS algorithms in the presence of spherically invariant processes , 1993, IEEE Trans. Signal Process..

[15]  J. R. Zeidler,et al.  Performance analysis of LMS adaptive prediction filters , 1990, Proc. IEEE.

[16]  Dirk T. M. Slock,et al.  On the convergence behavior of the LMS and the normalized LMS algorithms , 1993, IEEE Trans. Signal Process..

[17]  Sanjit K. Mitra,et al.  Block implementation of adaptive digital filters , 1981 .

[18]  G. Zames Feedback and optimal sensitivity: Model reference transformations, multiplicative seminorms, and approximate inverses , 1981 .

[19]  Thomas Kailath,et al.  A view of three decades of linear filtering theory , 1974, IEEE Trans. Inf. Theory.

[20]  B. Widrow,et al.  Adaptive noise cancelling: Principles and applications , 1975 .

[21]  E. Ferrara Fast implementations of LMS adaptive filters , 1980 .

[22]  Wilmar Hernández Improving the response of an accelerometer by using optimal filtering , 2001 .

[23]  G. Zames,et al.  Feedback, minimax sensitivity, and optimal robustness , 1983 .

[24]  Vicente Díaz López,et al.  Teoría de los vehículos automóviles , 1995 .