Improvements on Visual Servoing From Spherical Targets Using a Spherical Projection Model

This paper is concerned with improvements to visual feature modeling using a spherical projection model. Three spherical targets are considered: a sphere, a sphere marked with a tangent vector to a point on its surface, and a sphere marked with two points on its surface. A new minimal and decoupled set of visual features is proposed for each target using any central catadioptric camera. Using the proposed set for a sphere, a classical control law is proved to be globally asymptotically stable in the presence of modeling errors and locally asymptotically stable in the presence of calibration errors, considering that perspective and paracatadioptric cameras were used. Simulation and experimental results with perspective, paracatadioptric, and fish-eye cameras validate the proposed theoretical results.

[1]  William J. Wilson,et al.  Relative end-effector control using Cartesian position based visual servoing , 1996, IEEE Trans. Robotics Autom..

[2]  Bernard Espiau,et al.  Effect of Camera Calibration Errors on Visual Servoing in Robotics , 1993, ISER.

[3]  Gregory D. Hager,et al.  Fast and Globally Convergent Pose Estimation from Video Images , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Romeo Tatsambon Fomena Asservissement visuel par projection sphérique , 2008 .

[5]  François Chaumette,et al.  2½D visual servoing , 1999, IEEE Trans. Robotics Autom..

[6]  François Chaumette,et al.  Potential problems of stability and convergence in image-based and position-based visual servoing , 1997 .

[7]  François Chaumette,et al.  Point-based and region-based image moments for visual servoing of planar objects , 2005, IEEE Transactions on Robotics.

[8]  William J. Wilson,et al.  Dynamic performance of the position-based visual servoing method in the Cartesian and image spaces , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[9]  Kostas Daniilidis,et al.  A Unifying Theory for Central Panoramic Systems and Practical Applications , 2000, ECCV.

[10]  Patrick Rives,et al.  Classification and realization of the different vision-based tasks , 1993 .

[11]  Larry S. Davis,et al.  Model-based object pose in 25 lines of code , 1992, International Journal of Computer Vision.

[12]  David P. Miller AUTONOMOUS SPACECRAFT DOCKING USING MULTI-COLOR TARGETS , 1998 .

[13]  Daniel E. Koditschek,et al.  Visual servoing via navigation functions , 2002, IEEE Trans. Robotics Autom..

[14]  Peter I. Corke,et al.  A tutorial on visual servo control , 1996, IEEE Trans. Robotics Autom..

[15]  Juho Kannala,et al.  A generic camera model and calibration method for conventional, wide-angle, and fish-eye lenses , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  Radu Horaud,et al.  Visual Servoing/Tracking Using Central Catadioptric Images , 2002, ISER.

[17]  Darius Burschka,et al.  Vision-based control of mobile robots , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[18]  Radu Horaud,et al.  Visual Servoing from Lines , 2002, Int. J. Robotics Res..

[19]  Noah J. Cowan,et al.  Geometric visual servoing , 2005, IEEE Transactions on Robotics.

[20]  Robert E. Mahony,et al.  Visual servoing of an under-actuated dynamic rigid-body system: an image-based approach , 2002, IEEE Trans. Robotics Autom..

[21]  E. H. Linfoot Principles of Optics , 1961 .

[22]  Peter I. Corke,et al.  A new partitioned approach to image-based visual servo control , 2001, IEEE Trans. Robotics Autom..

[23]  François Chaumette,et al.  Visual Servoing from Spheres with Paracatadioptric Cameras , 2007 .

[24]  Shree K. Nayar,et al.  A theory of catadioptric image formation , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[25]  Pierre Gurdjos,et al.  A New Linear Calibration Method for Paracatadioptric Cameras , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[26]  Francois Chaumette,et al.  Potential problems of unstability and divergence in image-based and position-based visual servoing , 1999, 1999 European Control Conference (ECC).

[27]  Philippe Martinet,et al.  2 1/2 D visual servoing with central catadioptric cameras , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[28]  François Chaumette,et al.  Path planning for robust image-based control , 2002, IEEE Trans. Robotics Autom..

[29]  François Chaumette,et al.  Visual Servoing from Spheres using a Spherical Projection Model , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[30]  François Chaumette,et al.  Visual servoing from two special compounds of features using a spherical projection model , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[31]  François Chaumette,et al.  Theoretical improvements in the stability analysis of a new class of model-free visual servoing methods , 2002, IEEE Trans. Robotics Autom..

[32]  E. Malis,et al.  2 1/2 D Visual Servoing , 1999 .

[33]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[34]  Masami Iwatsuki,et al.  A new formulation of visual servoing based on cylindrical coordinate system , 2005, IEEE Trans. Robotics.

[35]  Philippe Martinet,et al.  Vision Based Control Law using 3D Visual Features , 1997 .