Existence of positive solutions to the Schrödinger–Poisson system without compactness conditions

Abstract In this paper, we discuss the existence of a positive radial solution to a generalized Schrodinger–Poisson system without compactness conditions. By the method of the combination of a cut-off function, a monotonicity trick and a Pohozaev type identity, we obtain the boundedness of a Palais–Smale sequence.

[1]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[2]  Antonio Azzollini,et al.  On the Schrödinger-Maxwell equations under the effect of a general nonlinear term , 2009, 0904.1557.

[3]  Dimitri Mugnai,et al.  Solitary waves for nonlinear Klein–Gordon–Maxwell and Schrödinger–Maxwell equations , 2004, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[4]  Pierre-Louis Lions,et al.  Nonlinear scalar field equations, I existence of a ground state , 1983 .

[5]  Dimitri Mugnai,et al.  Non-Existence Results for the Coupled Klein-Gordon-Maxwell Equations , 2004 .

[6]  Antonio Azzollini,et al.  A Note on the Ground State Solutions for the Nonlinear Schrödinger-Maxwell Equations , 2007, math/0703677.

[7]  David Ruiz,et al.  Multiple bound states for the Schroedinger-Poisson problem , 2008 .

[8]  Stefan Le Coz,et al.  An existence and stability result for standing waves of nonlinear Schrödinger equations , 2006, Advances in Differential Equations.

[9]  Louis Jeanjean,et al.  Local conditions insuring bifurcation from the continuous spectrum , 1999 .

[10]  Zhongli Wei,et al.  Existence of infinitely many large solutions for the nonlinear Schrödinger–Maxwell equations , 2010 .

[11]  Fukun Zhao,et al.  On the existence of solutions for the Schrödinger-Poisson equations , 2008 .

[12]  Wolfgang Desch,et al.  Progress in nonlinear differential equations and their applications, Vol. 80 , 2011 .

[13]  D. Ruiz,et al.  A Note on The Schrödinger-Poisson-Slater Equation on Bounded Domains , 2008 .

[14]  Lorenzo Pisani,et al.  Note on a Schrödinger-Poisson system in a bounded domain , 2008, Appl. Math. Lett..

[15]  Jiang Yongsheng,et al.  BOUND STATES FOR A STATIONARY NONLINEAR SCHRODINGER-POISSON SYSTEM WITH SIGN-CHANGING POTENTIAL IN R-3 , 2009 .

[16]  Pietro d’Avenia,et al.  Non-radially symmetric solutions of nonlinear Schrödinger equation coupled with Maxwell equations , 2002 .

[17]  P. d’Avenia,et al.  On a system involving a critically growing nonlinearity , 2011, 1108.0637.

[18]  Hiroaki Kikuchi On the existence of a solution for elliptic system related to the Maxwell–Schrödinger equations , 2007 .

[19]  C. O. Alves,et al.  Schrödinger–Poisson equations without Ambrosetti–Rabinowitz condition☆ , 2011 .

[20]  G. Siciliano Multiple Positive Solutions for a Schr¨odinger -poisson-slater System , 2009 .

[21]  Huan-Song Zhou,et al.  Positive solution for a nonlinear stationary Schrödinger-Poisson system in $R^3$ , 2007 .

[22]  A. Azzollini Concentration and compactness in nonlinear Schrödinger–Poisson system with a general nonlinearity☆ , 2009, 0906.5356.

[23]  Vieri Benci,et al.  An eigenvalue problem for the Schrödinger-Maxwell equations , 1998 .

[24]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[25]  David Ruiz,et al.  The Schrödinger–Poisson equation under the effect of a nonlinear local term , 2006 .