Toroidal rotation profile control for the DIII-D tokamak

A model-based control approach for the combined regulation of the plasma toroidal angular rotation profile and stored energy for the DIII-D tokamak is proposed in this work. We consider, a first-principles-driven (FPD), control-oriented model of the toroidal rotation profile evolution which incorporates scenario-specific models of the momentum sources. Available rotation control mechanisms include the non-axisymmetric field coils, which provide rotation damping, and the neutral beam injectors (NBI). The plasma stored energy is regulated by the total injected auxiliary power. Optimal state feedback control with integral action is used to regulate the profile around a target while rejecting disturbances. The controller is designed to be robust against uncertainties in the anomalous momentum diffusivity term.

[1]  M. Rosenbluth,et al.  The mechanism for toroidal momentum input to Tokamak plasmas from neutral beams , 1999 .

[2]  G. Jackson,et al.  Effect of resonant and non-resonant magnetic braking on error field tolerance in high beta plasmas , 2009, Nuclear Fusion.

[3]  A. Pironti,et al.  Fusion, tokamaks, and plasma control: an introduction and tutorial , 2005, IEEE Control Systems.

[4]  P. Politzer,et al.  Power threshold for neutral beam current drive , 1990 .

[5]  C. Hegna,et al.  Toroidal rotation in tokamak plasmas , 2009 .

[6]  R. Budny,et al.  Advances in understanding the generation and evolution of the toroidal rotation profile on DIII-D , 2009 .

[7]  R. J. Buttery,et al.  Islands in the stream: The effect of plasma flow on tearing stability , 2009 .

[8]  Course,et al.  Basic physical processes of toroidal fusion plasmas : proceedings of the course and workshop held at Villa Monastero - Varenna, Italy, August 26-September 3, 1985 , 1986 .

[9]  Yongsheng Ou,et al.  Robust Control Design for the Poloidal Magnetic Flux Profile Evolution in the Presence of Model Uncertainties , 2010, IEEE Transactions on Plasma Science.

[10]  T.K. Fowler,et al.  Nuclear fusion , 1989, IEEE Potentials.

[11]  Eugenio Schuster,et al.  Physics-based control-oriented modeling of the safety factor profile dynamics in high performance tokamak plasmas , 2013, 52nd IEEE Conference on Decision and Control.

[12]  J. L. Luxon,et al.  A design retrospective of the DIII-D tokamak , 2002 .

[13]  D. A. Humphreys,et al.  Simultaneous feedback control of plasma rotation and stored energy on the DIII-D tokamak , 2007 .

[14]  K. Burrell,et al.  Plasma rotation driven by static nonresonant magnetic fields , 2008 .

[15]  de Mfm Maarten Bock Understanding and controlling plasma rotation in tokamaks , 2007 .

[16]  小倩,et al.  Fusion Rings for Degenerate Minimal Models , 2002 .

[17]  T S Taylor,et al.  Sustained stabilization of the resistive-wall mode by plasma rotation in the DIII-D tokamak. , 2001, Physical review letters.

[18]  Eugenio Schuster,et al.  Toroidal current profile control during low confinement mode plasma discharges in DIII-D via first-principles-driven model-based robust control synthesis , 2012 .

[19]  Neoclassical transport fluxes in the plateau regime in nonaxisymmetric toroidal plasmas , 1986 .

[20]  T. H. Stix,et al.  Decay of poloidal rotation in a tokamak plasma , 1973 .

[21]  D. J. Campbell,et al.  Chapter 1: Overview and summary , 1999 .

[22]  Ian Postlethwaite,et al.  Multivariable Feedback Control: Analysis and Design , 1996 .