NMR Structure of the Bacteriophage λ N Peptide/boxB RNA Complex: Recognition of a GNRA Fold by an Arginine-Rich Motif

[1]  T. Pawson,et al.  Signaling through scaffold, anchoring, and adaptor proteins. , 1997, Science.

[2]  M. Weiss,et al.  RNA recognition by a bent alpha-helix regulates transcriptional antitermination in phage lambda. , 1997, Biochemistry.

[3]  Gabriele Varani,et al.  RNA-Protein Intermolecular Recognition , 1997 .

[4]  H. Chen,et al.  An RNA enhancer in a phage transcriptional antitermination complex functions as a structural switch. , 1997, Genes & development.

[5]  Jack Greenblatt,et al.  Methods for Measurement of Intermolecular NOEs by Multinuclear NMR Spectroscopy: Application to a Bacteriophage λ N-Peptide/boxB RNA Complex , 1997 .

[6]  Peter Schultze,et al.  Chirality errors in nucleic acid structures , 1997, Nature.

[7]  L. Kay,et al.  Pulse schemes for the measurement of3 JC′Cγ and3 JNCγ scalar couplings in 15N,13C uniformly labeled proteins , 1997 .

[8]  G. Varani RNA - Protein Intermolecular Recognition , 1997 .

[9]  E. Martínez-Salas,et al.  Conserved structural motifs located in distal loops of aphthovirus internal ribosome entry site domain 3 are required for internal initiation of translation , 1997, Journal of virology.

[10]  A. Pyle,et al.  Remarkable morphological variability of a common RNA folding motif: the GNRA tetraloop-receptor interaction. , 1997, Journal of molecular biology.

[11]  P. V. von Hippel,et al.  Complexes of N antitermination protein of phage lambda with specific and nonspecific RNA target sites on the nascent transcript. , 1997, Biochemistry.

[12]  H. Heus,et al.  A network of heterogeneous hydrogen bonds in GNRA tetraloops. , 1996, Journal of molecular biology.

[13]  D. Patel,et al.  Deep penetration of an α-helix into a widened RNA major groove in the HIV-1 rev peptide–RNA aptamer complex , 1996, Nature Structural Biology.

[14]  O. Uhlenbeck,et al.  Mutagenesis of a stacking contact in the MS2 coat protein‐RNA complex. , 1996, The EMBO journal.

[15]  C. Kundrot,et al.  Crystal Structure of a Group I Ribozyme Domain: Principles of RNA Packing , 1996, Science.

[16]  L. Kay,et al.  α Helix-RNA Major Groove Recognition in an HIV-1 Rev Peptide-RRE RNA Complex , 1996, Science.

[17]  G. Varani,et al.  Specificity of ribonucleoprotein interaction determined by RNA folding during complex formation , 1996, Nature.

[18]  M. Billeter,et al.  MOLMOL: a program for display and analysis of macromolecular structures. , 1996, Journal of molecular graphics.

[19]  A. Palmer,et al.  Interaction between the phage HK022 Nun protein and the nut RNA of phage lambda. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[20]  Patel,et al.  Molecular recognition in the bovine immunodeficiency virus Tat peptide-TAR RNA complex. , 1995, Chemistry & biology.

[21]  J. Puglisi,et al.  Solution Structure of a Bovine Immunodeficiency Virus Tat-TAR Peptide-RNA Complex , 1995, Science.

[22]  J. Greenblatt,et al.  A protein-RNA interaction network facilitates the template-independent cooperative assembly on RNA polymerase of a stable antitermination complex containing the lambda N protein. , 1995, Genes & development.

[23]  S. Grzesiek,et al.  NMRPipe: A multidimensional spectral processing system based on UNIX pipes , 1995, Journal of biomolecular NMR.

[24]  D. Court,et al.  Transcription antitermination: the λ paradigm updated , 1995 .

[25]  A. Klug,et al.  The crystal structure of an AII-RNAhammerhead ribozyme: A proposed mechanism for RNA catalytic cleavage , 1995, Cell.

[26]  A. Frankel,et al.  Structural variety of arginine-rich RNA-binding peptides. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[27]  L. Gold,et al.  Isolation of high-affinity RNA ligands to HIV-1 integrase from a random pool. , 1995, Virology.

[28]  R. Brimacombe,et al.  The structure of ribosomal RNA: a three-dimensional jigsaw puzzle. , 1995, European journal of biochemistry.

[29]  Luis Serrano,et al.  The hydrophobic-staple motif and a role for loop-residues in α-helix stability and protein folding , 1995, Nature Structural Biology.

[30]  S. Chattopadhyay,et al.  Bipartite function of a small RNA hairpin in transcription antitermination in bacteriophage lambda. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[31]  A. Pardi,et al.  GNRA tetraloops make a U-turn. , 1995, RNA.

[32]  K. Flaherty,et al.  Model for an RNA tertiary interaction from the structure of an intermolecular complex between a GAAA tetraloop and an RNA helix , 1994, Nature.

[33]  K. Flaherty,et al.  Three-dimensional structure of a hammerhead ribozyme , 1994, Nature.

[34]  Bruce A. Johnson,et al.  NMR View: A computer program for the visualization and analysis of NMR data , 1994, Journal of biomolecular NMR.

[35]  R. Gutell,et al.  Lessons from an evolving rRNA: 16S and 23S rRNA structures from a comparative perspective. , 1994, Microbiological reviews.

[36]  T. Cech,et al.  GAAA tetraloop and conserved bulge stabilize tertiary structure of a group I intron domain. , 1994, Journal of molecular biology.

[37]  K. Taira,et al.  High-resolution NMR study of a synthetic oligoribonucleotide with a tetranucleotide GAGA loop that is a substrate for the cytotoxic protein, ricin. , 1993, Nucleic acids research.

[38]  Ad Bax,et al.  Quantitative J correlation: a new approach for measuring homonuclear three-bond J(HNH.alpha.) coupling constants in 15N-enriched proteins , 1993 .

[39]  N. Franklin Clustered arginine residues of bacteriophage lambda N protein are essential to antitermination of transcription, but their locale cannot compensate for boxB loop defects. , 1993, Journal of molecular biology.

[40]  I. Wool,et al.  Ribosomal RNA identity elements for ricin A-chain recognition and catalysis. Analysis with tetraloop mutants. , 1992, Journal of molecular biology.

[41]  J. Thornton,et al.  Stereochemical quality of protein structure coordinates , 1992, Proteins.

[42]  I. Wool,et al.  Ribosomal RNA identity elements for ricin A-chain recognition and catalysis. , 1991, Journal of molecular biology.

[43]  H. Heus,et al.  Structural features that give rise to the unusual stability of RNA hairpins containing GNRA loops. , 1991, Science.

[44]  E. Westhof,et al.  Modelling of the three-dimensional architecture of group I catalytic introns based on comparative sequence analysis. , 1990, Journal of molecular biology.

[45]  E. Brody,et al.  Prediction of rho-independent Escherichia coli transcription terminators. A statistical analysis of their RNA stem-loop structures. , 1990 .

[46]  T. Steitz,et al.  Structural studies of protein–nucleic acid interaction: the sources of sequence-specific binding , 1990, Quarterly Reviews of Biophysics.

[47]  D. Lazinski,et al.  Sequence-specific recognition of RNA hairpins by bacteriophage antiterminators requires a conserved arginine-rich motif , 1989, Cell.

[48]  N. Franklin,et al.  Effects of all single base substitutions in the loop of boxB on antitermination of transcription by bacteriophage lambda's N protein. , 1989, Nucleic acids research.

[49]  N. Pace,et al.  The secondary structure of ribonuclease P RNA, the catalytic element of a ribonucleoprotein enzyme , 1988, Cell.

[50]  N. Franklin Conservation of genome form but not sequence in the transcription antitermination determinants of bacteriophages λ, φ21 and P22☆ , 1985 .

[51]  D. Friedman,et al.  The nusA recognition site. Alteration in its sequence or position relative to upstream translation interferes with the action of the N antitermination function of phage lambda. , 1984, Journal of molecular biology.

[52]  Wolfram Saenger,et al.  Principles of Nucleic Acid Structure , 1983 .

[53]  Joyce Li,et al.  Interaction of the sigma factor and the nusA gene protein of E. coli with RNA polymerase in the initiation-termination cycle of transcription , 1981, Cell.

[54]  Joyce Li,et al.  The nusA gene protein of Escherichia coli. Its identification and a demonstration that it interacts with the gene N transcription anti-termination protein of bacteriophage lambda. , 1981, Journal of molecular biology.

[55]  W. Szybalski,et al.  Coliphage lambdanutL-: a unique class of mutants defective in the site of gene N product utilization for antitermination of leftward transcription. , 1978, Journal of molecular biology.

[56]  P. Calvert NMR of macromolecules , 1977, Nature.

[57]  Joyce Li,et al.  Independent ligand-induced folding of the RNA-binding domain and two functionally distinct antitermination regions in the phage lambda N protein. , 1998, Molecular cell.

[58]  J. Williamson,et al.  Analysis of bacteriophage N protein and peptide binding to boxB RNA using polyacrylamide gel coelectrophoresis (PACE). , 1997, RNA.

[59]  M. McPherson,et al.  PCR 2 : a practical approach , 2016 .

[60]  A Klug,et al.  The crystal structure of an all-RNA hammerhead ribozyme. , 1995, Nucleic acids symposium series.

[61]  Axel T. Brunger,et al.  X-PLOR Version 3.1: A System for X-ray Crystallography and NMR , 1992 .

[62]  H. Noller Structure of ribosomal RNA. , 1984, Annual review of biochemistry.

[63]  B. Matthews,et al.  Structural studies of protein-nucleic acid interactions. , 1983, Annual review of biophysics and bioengineering.

[64]  Interaction between the phage HK022 Nun protein and the nut RNA of phage A , 2022 .