Cellulose ternary photonic crystal created by solution processing

For the first time, a multiplanar photonic crystal structure has been obtained using cellulose as a structural material. This all-polymer system, made of cellulose, polyvinyl alcohol and poly(N-vinylcarbazole) is a ternary planar photonic crystal composed by 7 repeated trilayers produced by spin coating. Trimethylsilyl cellulose is used as a precursor to be converted to cellulose. Transverse Transmission Electron Microscopy analysis of our systems confirms the multilayered structure whose optical response can be theoretically accounted for. Preliminary results on the response of the photonic crystal to water vapors envisage the use of this system for humidity optical sensing.

[1]  Dellepiane,et al.  Optical properties and long-lived charged photoexcitations in polydiacetylenes. , 1994, Physical review. B, Condensed matter.

[2]  A. Borghesi,et al.  Photoinduced absorption of oriented poly[1,6-di( N -carbazolyl)-2,4-hexadiyne] , 1996 .

[3]  J. S. Sharp,et al.  Infrared Dielectric Mirrors Based on Thin Film Multilayers of Polystyrene and Polyvinylpyrrolidone , 2011 .

[4]  U. Steiner,et al.  Analysing photonic structures in plants , 2013, Journal of The Royal Society Interface.

[5]  U. Steiner,et al.  Natural Helicoidal Structures: Morphology, Self-assembly and Optical Properties , 2014 .

[6]  Davide Comoretto,et al.  Polymer Distributed Bragg Reflectors for Vapor Sensing , 2015 .

[7]  J. Niemantsverdriet,et al.  Novel method for preparing cellulose model surfaces by spin coating , 2003 .

[8]  Sant Prasad Ojha,et al.  Enhancement of omnidirectional total-reflection wavelength range by using one-dimensional ternary photonic bandgap material , 2006 .

[9]  Hanne M. van der Kooij,et al.  Controlled, Bio-inspired Self-Assembly of Cellulose-Based Chiral Reflectors , 2014, Advanced optical materials.

[10]  D. Comoretto Organic and Hybrid Photonic Crystals , 2015 .

[11]  A. Geddes Interaction of trifluoroacetic acid with cellulose and related compounds , 1956 .

[12]  Shingo Yokota,et al.  Surface morphology of cellulose films prepared by spin coating on silicon oxide substrates pretreated with cationic polyelectrolyte , 2007 .

[13]  Dahe Liu,et al.  The rule for broadening of band-gaps in biperiodic photonic crystals , 2004 .

[14]  Jeremy J. Baumberg,et al.  Pointillist structural color in Pollia fruit , 2012, Proceedings of the National Academy of Sciences.

[15]  C. Teichert,et al.  Thin cellulose films as a model system for paper fibre bonds , 2014, Cellulose.

[16]  Eli Yablonovitch,et al.  Inhibited spontaneous emission in solid-state electronics , 1987 .

[17]  S. Kumar,et al.  Tuning of refractive index of poly(vinyl alcohol): Effect of embedding Cu and Ag nanoparticles , 2013 .

[18]  Steven G. Johnson,et al.  Photonic Crystals: Molding the Flow of Light , 1995 .

[19]  Xiangbo Yang,et al.  Omnidirectional reflection in one-dimensional ternary photonic crystals and photonic heterostructures , 2014 .

[20]  M. Patrini,et al.  Fluorescence excitation enhancement by Bloch surface wave in all-polymer one- dimensional photonic structure , 2014 .

[21]  Davide Comoretto,et al.  Directional Enhancement of Spontaneous Emission in Polymer Flexible Microcavities , 2011 .

[22]  V. Dragostinova,et al.  Refractive index investigation of poly(vinyl alcohol) films with TiO2 nanoparticle inclusions. , 2012, Applied optics.

[23]  Ryan Mills,et al.  Adhesion and Surface Issues in Cellulose and Nanocellulose , 2008 .

[24]  M. Milinkovitch,et al.  Photonic crystals cause active colour change in chameleons , 2015, Nature Communications.

[25]  T. Mohan,et al.  Wettability and surface composition of partly and fully regenerated cellulose thin films from trimethylsilyl cellulose. , 2011, Journal of colloid and interface science.

[26]  J. Schurz A bright future for cellulose , 1999 .

[27]  Anirudh Banerjee,et al.  ENHANCED REFRACTOMETRIC OPTICAL SENSING BY USING ONE-DIMENSIONAL TERNARY PHOTONIC CRYSTALS , 2009 .

[28]  J. Niemantsverdriet,et al.  Cellulose model surfaces - simplified preparation by spin coating and characterization by X-ray photoelectron spectroscopy, infrared spectroscopy, and atomic force microscopy , 2003 .

[29]  C. McCormick,et al.  THE LITHIUM CHLORIDE/DIMETHYLACETAMIDE SOLVENT FOR CELLULOSE: A LITERATURE REVIEW , 1990 .

[30]  Jeremy J. Baumberg,et al.  Digital Color in Cellulose Nanocrystal Films , 2014, ACS applied materials & interfaces.

[31]  F. Scotognella,et al.  Band gap splitting and average transmission lowering in ordered and disordered one-dimensional photonic structures composed by more than two materials with the same optical thickness , 2014, 1407.4051.

[32]  Charalambos C. Katsidis,et al.  General transfer-matrix method for optical multilayer systems with coherent, partially coherent, and incoherent interference. , 2002, Applied optics.

[33]  I. Nikolov,et al.  Analysis of the dispersion of optical plastic materials , 2007 .

[34]  F. Scotognella,et al.  Spin-Coated Polymer and Hybrid Multilayers and Microcavities , 2015 .

[35]  Robert R. Alfano,et al.  Solution processed microcavity structures with embedded quantum dots , 2007 .

[36]  John,et al.  Strong localization of photons in certain disordered dielectric superlattices. , 1987, Physical review letters.

[37]  B. Voit,et al.  High refractive index hyperbranched polyvinylsulfides for planar one‐dimensional all‐polymer photonic crystals , 2016 .

[38]  C. Soci,et al.  Hybrid ZnO:polystyrene nanocomposite for all-polymer photonic crystals , 2015 .

[39]  Vipin Kumar,et al.  Omnidirectional reflector using linearly graded refractive index profile of 1D binary and ternary photonic crystal , 2015 .

[40]  Bharat Bhushan,et al.  Structural coloration in nature , 2013 .

[41]  J. Niemantsverdriet,et al.  Introducing open films of nanosized cellulose—atomic force microscopy and quantification of morphology , 2005 .

[42]  C. Teichert,et al.  The effects of water uptake on mechanical properties of viscose fibers , 2015, Cellulose.

[43]  Winn,et al.  A dielectric omnidirectional reflector , 1998, Science.

[44]  Guglielmo Lanzani,et al.  Lasing from all-polymer microcavities , 2014 .

[45]  K. Wong,et al.  Kinetics of adsorption, of polyvinylamine onto cellulose , 2000 .

[46]  Enyong Ding,et al.  Surface modification of cellulose nanocrystals , 2007 .

[47]  M. Canepa,et al.  In-plane anisotropic photoresponse in all-polymer planar microcavities , 2016 .

[48]  T. M. Herrington,et al.  The adsorption of aluminium from aqueous solution by cellulose fibres , 1989 .

[49]  Investigation of a ternary 1D photonic crystal band gap width , 2010, International Conference On Photonics 2010.

[50]  L. Wågberg,et al.  Model films of cellulose: I. Method development and initial results , 2002 .

[51]  A. Parker,et al.  Natural photonics for industrial inspiration , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[52]  Davide Comoretto,et al.  Demonstration of fluorescence enhancement via Bloch surface waves in all-polymer multilayer structures. , 2016, Physical chemistry chemical physics : PCCP.

[53]  J. Sambles,et al.  Photonic structures in biology , 2003, Nature.