Probabilistic Assessment of Lifetime of Low-Earth-Orbit Spacecraft: Uncertainty Propagation and Sensitivity Analysis

This paper is devoted to the probabilistic uncertainty quantification of orbital lifetime estimation of low-altitude satellites. Specifically, given a detailed characterization of the dominant sources of uncertainty, we map this input into a probabilistic characterization of the orbital lifetime through orbital propagation. Standard Monte Carlo propagation is first considered. The concept of drag correction is then introduced to facilitate the use of polynomial chaos expansions and to make uncertainty propagation computationally effective. Finally, the obtained probabilistic model is exploited to carry out stochastic sensitivity analyses, which in turn allow gaining insight into the impact uncertainties have on orbital lifetime. The proposed developments are illustrated using one CubeSat of the QB50 constellation.

[1]  Bruno Sudret,et al.  Global sensitivity analysis using polynomial chaos expansions , 2008, Reliab. Eng. Syst. Saf..

[2]  George L. Nemhauser,et al.  Handbooks in operations research and management science , 1989 .

[3]  Kenneth Moe,et al.  Gas-surface interactions and satellite drag coefficients , 2005 .

[4]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[5]  Daniel E. Hastings,et al.  Spacecraft Design Lifetime , 2002 .

[6]  Brian Argrow,et al.  Semiempirical Model for Satellite Energy-Accommodation Coefficients , 2010 .

[7]  John L. Junkins,et al.  Non-Gaussian error propagation in orbital mechanics , 1996 .

[8]  David Cssi Vallado Verifying Observational Data for Real World Space Situational Awareness , 2017 .

[9]  S. Julier,et al.  A General Method for Approximating Nonlinear Transformations of Probability Distributions , 1996 .

[10]  D. Drob,et al.  Nrlmsise-00 Empirical Model of the Atmosphere: Statistical Comparisons and Scientific Issues , 2002 .

[11]  B. Øksendal Stochastic differential equations : an introduction with applications , 1987 .

[12]  Florent Deleflie,et al.  Long Term Orbit Propagation Techniques Developed in the Frame of the French Space Act , 2012 .

[13]  R. Park,et al.  Nonlinear Mapping of Gaussian Statistics: Theory and Applications to Spacecraft Trajectory Design , 2006 .

[14]  Ilya M. Sobol,et al.  Sensitivity Estimates for Nonlinear Mathematical Models , 1993 .

[15]  Omar M. Knio,et al.  Spectral Methods for Uncertainty Quantification , 2010 .

[16]  O. L. Maître,et al.  Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics , 2010 .

[17]  Shinichi Watari,et al.  Separation of periodic, chaotic, and random components in solar activity , 1996 .

[18]  Puneet Singla,et al.  An Approach for Nonlinear Uncertainty Propagation: Application to Orbital Mechanics , 2009 .

[19]  Harvey M. Wagner,et al.  Global Sensitivity Analysis , 1995, Oper. Res..

[20]  A. Doostan,et al.  Nonlinear Propagation of Orbit Uncertainty Using Non-Intrusive Polynomial Chaos , 2013 .

[21]  S. Aachen Stochastic Differential Equations An Introduction With Applications , 2016 .

[22]  Daniel J. Scheeres,et al.  Analytical Nonlinear Propagation of Uncertainty in the Two-Body Problem , 2012 .

[23]  M. Rosenblatt Remarks on Some Nonparametric Estimates of a Density Function , 1956 .

[24]  S. Rahman Reliability Engineering and System Safety , 2011 .

[25]  Les Johnson,et al.  NanoSail-D: A solar sail demonstration mission , 2011 .

[26]  Alireza Doostan,et al.  Satellite collision probability estimation using polynomial chaos expansions , 2013 .

[27]  Michael S. Eldred,et al.  DAKOTA : a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis. Version 5.0, user's reference manual. , 2010 .

[28]  S. Ashrafi,et al.  Nonlinear techniques for forecasting solar activity directly from its time series , 1992 .

[29]  Gianluca Iaccarino,et al.  A least-squares approximation of partial differential equations with high-dimensional random inputs , 2009, J. Comput. Phys..

[30]  Gaëtan Kerschen,et al.  Probabilistic Assessment of the Lifetime of Low-Earth-Orbit Spacecraft: Uncertainty Characterization , 2015 .

[31]  Sophia Lefantzi,et al.  DAKOTA : a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis. , 2011 .

[32]  E. Parzen On Estimation of a Probability Density Function and Mode , 1962 .

[33]  Olivier P. Le Maître,et al.  Polynomial chaos expansion for sensitivity analysis , 2009, Reliab. Eng. Syst. Saf..

[34]  K. Schatten,et al.  Orbit Decay Prediction Sensitivity to Solar Flux Variations , 2007 .

[35]  M. L. Eaton Multivariate statistics : a vector space approach , 1985 .

[36]  D. Xiu Numerical Methods for Stochastic Computations: A Spectral Method Approach , 2010 .

[37]  A. Gardner Methods of Statistics , 1941 .

[38]  E. Doornbos Thermospheric Density and Wind Determination from Satellite Dynamics , 2012 .

[39]  Alexander Loskutov,et al.  Testing and forecasting the time series of the solar activity by singular spectrum analysis , 2000, nlin/0010027.

[40]  James E. Gentle,et al.  Elements of computational statistics , 2002 .

[41]  Saltelli Andrea,et al.  Global Sensitivity Analysis: The Primer , 2008 .

[42]  Jared M. Maruskin,et al.  Fundamental limits on spacecraft orbit uncertainty and distribution propagation , 2006 .

[43]  Lee H. Sentman,et al.  FREE MOLECULE FLOW THEORY AND ITS APPLICATION TO THE DETERMINATION OF AERODYNAMIC FORCES , 1961 .

[44]  Holger Krag,et al.  Assessment and Categorization of TLE Orbit Errors for the US SSN Catalogue , 2008 .

[45]  A. Doostan,et al.  CONJUNCTION ASSESSMENT USING POLYNOMIAL CHAOS EXPANSIONS , 2012 .