3D Raman Spectroscopy Investigation of Defects in 4H-SiC Epilayer

In this report we were able to successfully identify and localize in 3D 3C and 6H foreign polytypes and stress in the embedded epilayer by high resolution 3D Raman spectroscopy, that were otherwise invisible under the microscope or SEM, in non-contact and non-destructive way. Stripe patterned deep trenches with aspect ratio about 2 (depth=3.0μm; width=1.5μm) were formed on 4H-SiC substrate by ICP. The epitaxial layer was embedded in these trenches by SiC CVD. Poly type defects and stress in the embedded epilayer were mapped by curve-fitting of spectra obtained from Raman measurement of the embedded SiC epilayer. The location of the foreign polytypes and the stress inside the stripe pattern allows speculating on the origin of the defects and correlating it to the manufacturing process.